These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 32758536)
1. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions. Abdel-Mawgoud AM; Stephanopoulos G Metab Eng; 2020 Nov; 62():106-115. PubMed ID: 32758536 [TBL] [Abstract][Full Text] [Related]
2. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica. Schwartz CM; Hussain MS; Blenner M; Wheeldon I ACS Synth Biol; 2016 Apr; 5(4):356-9. PubMed ID: 26714206 [TBL] [Abstract][Full Text] [Related]
3. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica. Schwartz C; Wheeldon I Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237 [TBL] [Abstract][Full Text] [Related]
4. A CRISPR/Cas9-Mediated, Homology-Independent Tool Developed for Targeted Genome Integration in Yarrowia lipolytica. Cui Z; Zheng H; Zhang J; Jiang Z; Zhu Z; Liu X; Qi Q; Hou J Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452022 [No Abstract] [Full Text] [Related]
5. Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica. Yang Z; Xu P Methods Mol Biol; 2021; 2307():111-121. PubMed ID: 33847985 [TBL] [Abstract][Full Text] [Related]
6. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. Gao S; Tong Y; Wen Z; Zhu L; Ge M; Chen D; Jiang Y; Yang S J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1085-93. PubMed ID: 27349768 [TBL] [Abstract][Full Text] [Related]
7. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Bae SJ; Park BG; Kim BG; Hahn JS Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874 [TBL] [Abstract][Full Text] [Related]
8. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica. Holkenbrink C; Dam MI; Kildegaard KR; Beder J; Dahlin J; Doménech Belda D; Borodina I Biotechnol J; 2018 Sep; 13(9):e1700543. PubMed ID: 29377615 [TBL] [Abstract][Full Text] [Related]
9. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Shi TQ; Huang H; Kerkhoven EJ; Ji XJ Appl Microbiol Biotechnol; 2018 Nov; 102(22):9541-9548. PubMed ID: 30238143 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas9 with single guide RNA expression driven by small tRNA promoters showed reduced editing efficiency compared to a U6 promoter. Wei Y; Qiu Y; Chen Y; Liu G; Zhang Y; Xu L; Ding Q RNA; 2017 Jan; 23(1):1-5. PubMed ID: 27742910 [TBL] [Abstract][Full Text] [Related]
11. A set of Yarrowia lipolytica CRISPR/Cas9 vectors for exploiting wild-type strain diversity. Larroude M; Trabelsi H; Nicaud JM; Rossignol T Biotechnol Lett; 2020 May; 42(5):773-785. PubMed ID: 31974649 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica. Baisya D; Ramesh A; Schwartz C; Lonardi S; Wheeldon I Nat Commun; 2022 Feb; 13(1):922. PubMed ID: 35177617 [TBL] [Abstract][Full Text] [Related]
13. Multiple Parameters Drive the Efficiency of CRISPR/Cas9-Induced Gene Modifications in Yarrowia lipolytica. Borsenberger V; Onésime D; Lestrade D; Rigouin C; Neuvéglise C; Daboussi F; Bordes F J Mol Biol; 2018 Oct; 430(21):4293-4306. PubMed ID: 30227135 [TBL] [Abstract][Full Text] [Related]
14. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. Numamoto M; Maekawa H; Kaneko Y J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889 [TBL] [Abstract][Full Text] [Related]
15. Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast Yarrowia lipolytica. Schwartz C; Cheng JF; Evans R; Schwartz CA; Wagner JM; Anglin S; Beitz A; Pan W; Lonardi S; Blenner M; Alper HS; Yoshikuni Y; Wheeldon I Metab Eng; 2019 Sep; 55():102-110. PubMed ID: 31216436 [TBL] [Abstract][Full Text] [Related]
16. Genetic Tools for Streamlined and Accelerated Pathway Engineering in Yarrowia lipolytica. Wong L; Holdridge B; Engel J; Xu P Methods Mol Biol; 2019; 1927():155-177. PubMed ID: 30788791 [TBL] [Abstract][Full Text] [Related]
17. Genome Editing, Transcriptional Regulation, and Forward Genetic Screening Using CRISPR-Cas12a Systems in Yarrowia lipolytica. Ramesh A; Lee S; Wheeldon I Methods Mol Biol; 2024; 2760():169-198. PubMed ID: 38468089 [TBL] [Abstract][Full Text] [Related]
18. CRISPR Interference and Activation to Modulate Transcription in Yarrowia lipolytica. Misa J; Schwartz C Methods Mol Biol; 2021; 2307():95-109. PubMed ID: 33847984 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous Gene Excision and Integration by Dual-Guide CRISPR-Cas9. Spagnuolo M; Blenner M Methods Mol Biol; 2021; 2307():69-83. PubMed ID: 33847982 [TBL] [Abstract][Full Text] [Related]
20. Gene repression via multiplex gRNA strategy in Y. lipolytica. Zhang JL; Peng YZ; Liu D; Liu H; Cao YX; Li BZ; Li C; Yuan YJ Microb Cell Fact; 2018 Apr; 17(1):62. PubMed ID: 29678175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]