These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. Boosting activity of high-fidelity CRISPR/Cas9 variants using a tRNA He X; Wang Y; Yang F; Wang B; Xie H; Gu L; Zhao T; Liu X; Zhang D; Ren Q; Liu X; Liu Y; Gao C; Gu F J Biol Chem; 2019 Jun; 294(23):9308-9315. PubMed ID: 31010827 [TBL] [Abstract][Full Text] [Related]
29. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger. Song L; Ouedraogo JP; Kolbusz M; Nguyen TTM; Tsang A PLoS One; 2018; 13(8):e0202868. PubMed ID: 30142205 [TBL] [Abstract][Full Text] [Related]
30. Advances and opportunities in gene editing and gene regulation technology for Yarrowia lipolytica. Ganesan V; Spagnuolo M; Agrawal A; Smith S; Gao D; Blenner M Microb Cell Fact; 2019 Nov; 18(1):208. PubMed ID: 31783869 [TBL] [Abstract][Full Text] [Related]
31. Characterization of an efficient CRISPR-iCas9 system in Yarrowia lipolytica for the biosynthesis of carotenoids. Chen QH; Qian YD; Niu YJ; Hu CY; Meng YH Appl Microbiol Biotechnol; 2023 Oct; 107(20):6299-6313. PubMed ID: 37642716 [TBL] [Abstract][Full Text] [Related]
33. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica. Gao D; Smith S; Spagnuolo M; Rodriguez G; Blenner M Biotechnol J; 2018 Sep; 13(9):e1700590. PubMed ID: 29809313 [TBL] [Abstract][Full Text] [Related]
34. A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing. Xie K; Yang Y Methods Mol Biol; 2019; 1917():63-73. PubMed ID: 30610628 [TBL] [Abstract][Full Text] [Related]
35. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Wang Z; Wang S; Li D; Zhang Q; Li L; Zhong C; Liu Y; Huang H Plant Biotechnol J; 2018 Aug; 16(8):1424-1433. PubMed ID: 29331077 [TBL] [Abstract][Full Text] [Related]
36. Expansion of YALIcloneHR toolkit for Yarrowia lipolytica combined with Golden Gate and CRISPR technology. Shen Q; Yan F; Li YW; Wang J; Ji J; Yan WX; He DC; Song P; Shi TQ Biotechnol Lett; 2024 Feb; 46(1):37-46. PubMed ID: 38064043 [TBL] [Abstract][Full Text] [Related]
37. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis. Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560 [TBL] [Abstract][Full Text] [Related]
38. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci. Najah S; Saulnier C; Pernodet JL; Bury-Moné S BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153 [TBL] [Abstract][Full Text] [Related]
39. Conditional editing of the Wang BZ; Zhang C; Zhang JL; Sun J Yi Chuan; 2023 Jul; 45(7):593-601. PubMed ID: 37503583 [TBL] [Abstract][Full Text] [Related]
40. Multiplexed CRISPR-Cas9-Based Genome Editing of Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]