These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 32758728)
21. Climate drivers of large magnitude snow avalanche years in the U.S. northern Rocky Mountains. Peitzsch EH; Pederson GT; Birkeland KW; Hendrikx J; Fagre DB Sci Rep; 2021 May; 11(1):10032. PubMed ID: 33976297 [TBL] [Abstract][Full Text] [Related]
22. GPS signal reception under snow cover: a pilot study establishing the potential usefulness of GPS in avalanche search and rescue operations. Stepanek J; Claypool DW Wilderness Environ Med; 1997 May; 8(2):101-4. PubMed ID: 11990140 [TBL] [Abstract][Full Text] [Related]
23. Comparison of avalanche survival patterns in Canada and Switzerland. Haegeli P; Falk M; Brugger H; Etter HJ; Boyd J CMAJ; 2011 Apr; 183(7):789-95. PubMed ID: 21422139 [TBL] [Abstract][Full Text] [Related]
24. Spatial Landslide Susceptibility Assessment Based on Novel Neural-Metaheuristic Geographic Information System Based Ensembles. Moayedi H; Osouli A; Tien Bui D; Foong LK Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671801 [TBL] [Abstract][Full Text] [Related]
25. Numerical investigation of the effect of cohesion and ground friction on snow avalanches flow regimes. Ligneau C; Sovilla B; Gaume J PLoS One; 2022; 17(2):e0264033. PubMed ID: 35167595 [TBL] [Abstract][Full Text] [Related]
26. IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling. Mohammadi B; Safari MJS; Vazifehkhah S Sci Rep; 2022 Jul; 12(1):12096. PubMed ID: 35840640 [TBL] [Abstract][Full Text] [Related]
27. Climate warming enhances snow avalanche risk in the Western Himalayas. Ballesteros-Cánovas JA; Trappmann D; Madrigal-González J; Eckert N; Stoffel M Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3410-3415. PubMed ID: 29535224 [TBL] [Abstract][Full Text] [Related]
28. Seismic signature of the deadly snow avalanche of January 18, 2017, at Rigopiano (Italy). Braun T; Frigo B; Chiaia B; Bartelt P; Famiani D; Wassermann J Sci Rep; 2020 Oct; 10(1):18563. PubMed ID: 33122704 [TBL] [Abstract][Full Text] [Related]
29. Hybrid global gridded snow products and conceptual simulations of distributed snow budget: evaluation of different scenarios in a mountainous watershed. Taheri M; Anboohi MS; Mousavi R; Nasseri M Front Earth Sci; 2022 Oct; ():1-16. PubMed ID: 36258894 [TBL] [Abstract][Full Text] [Related]
30. Fast hybrid methods for modeling landslide susceptibility in Ardal County. Xu S Sci Rep; 2024 Feb; 14(1):3003. PubMed ID: 38321117 [TBL] [Abstract][Full Text] [Related]
31. Rescue missions for totally buried avalanche victims: conclusions from 12 years of experience. Hohlrieder M; Thaler S; Wuertl W; Voelckel W; Ulmer H; Brugger H; Mair P High Alt Med Biol; 2008; 9(3):229-33. PubMed ID: 18800960 [TBL] [Abstract][Full Text] [Related]
32. Dealing with the white death: avalanche risk management for traffic routes. Rheinberger CM; Bründl M; Rhyner J Risk Anal; 2009 Jan; 29(1):76-94. PubMed ID: 18808393 [TBL] [Abstract][Full Text] [Related]
34. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study. Roubík K; Sieger L; Sykora K PLoS One; 2015; 10(12):e0144332. PubMed ID: 26666523 [TBL] [Abstract][Full Text] [Related]
35. Histopathological changes in lungs of the mountain snow avalanche victims and its potential usefulness in determination of cause and mechanism of death. Kobek M; Skowronek R; Jabłoński C; Jankowski Z; Pałasz A Arch Med Sadowej Kryminol; 2016; 66(1):23-31. PubMed ID: 28155986 [TBL] [Abstract][Full Text] [Related]
36. Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: a first open-access ensemble model. Hardy SM; Lindgren M; Konakanchi H; Huettmann F Integr Comp Biol; 2011 Oct; 51(4):608-22. PubMed ID: 21873643 [TBL] [Abstract][Full Text] [Related]
37. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Costache R; Hong H; Pham QB Sci Total Environ; 2020 Apr; 711():134514. PubMed ID: 31812401 [TBL] [Abstract][Full Text] [Related]
38. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
39. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon Khosravi K; Pourghasemi HR; Chapi K; Bahri M Environ Monit Assess; 2016 Dec; 188(12):656. PubMed ID: 27826821 [TBL] [Abstract][Full Text] [Related]
40. Application of rotation forest with decision trees as base classifier and a novel ensemble model in spatial modeling of groundwater potential. Naghibi SA; Dolatkordestani M; Rezaei A; Amouzegari P; Heravi MT; Kalantar B; Pradhan B Environ Monit Assess; 2019 Mar; 191(4):248. PubMed ID: 30919064 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]