These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32758745)

  • 1. Effect of growth temperature on monoterpene emission rates of Acer palmatum.
    Mochizuki T; Ikeda F; Tani A
    Sci Total Environ; 2020 Nov; 745():140886. PubMed ID: 32758745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions.
    Chen J; Tang J; Yu X
    Environ Pollut; 2020 Apr; 259():113955. PubMed ID: 32023800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenic volatile organic compounds (BVOCs) emissions from Abies alba in a French forest.
    Moukhtar S; Couret C; Rouil L; Simon V
    Sci Total Environ; 2006 Feb; 354(2-3):232-45. PubMed ID: 16140360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monoterpene emissions in response to long-term night-time warming, elevated CO
    Tiiva P; Tang J; Michelsen A; Rinnan R
    Sci Total Environ; 2017 Feb; 580():1056-1067. PubMed ID: 27989477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monoterpene 'thermometer' of tropical forest-atmosphere response to climate warming.
    Jardine KJ; Jardine AB; Holm JA; Lombardozzi DL; Negron-Juarez RI; Martin ST; Beller HR; Gimenez BO; Higuchi N; Chambers JQ
    Plant Cell Environ; 2017 Mar; 40(3):441-452. PubMed ID: 27943309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012.
    Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L
    Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of soil water content and elevated CO
    Mochizuki T; Amagai T; Tani A
    Sci Total Environ; 2018 Sep; 634():900-908. PubMed ID: 29660884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests.
    Trowbridge AM; Daly RW; Helmig D; Stoy PC; Monson RK
    Ecology; 2014 Jun; 95(6):1591-603. PubMed ID: 25039223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan.
    Bao H; Kondo A; Kaga A; Tada M; Sakaguti K; Inoue Y; Shimoda Y; Narumi D; Machimura T
    Environ Res; 2008 Feb; 106(2):156-69. PubMed ID: 18023428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea.
    Kim JC; Kim KJ; Kim DS; Han JS
    Chemosphere; 2005 Jun; 59(11):1685-96. PubMed ID: 15894054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions.
    Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R
    Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal trends of biogenic terpene emissions.
    Helmig D; Daly RW; Milford J; Guenther A
    Chemosphere; 2013 Sep; 93(1):35-46. PubMed ID: 23827483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature increases in South Korea.
    Park CK; Ho CH; Jeong SJ; Lee EJ; Kim J
    PLoS One; 2017; 12(3):e0174390. PubMed ID: 28346534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters.
    Staudt M; Joffre R; Rambal S; Kesselmeier J
    Tree Physiol; 2001 May; 21(7):437-45. PubMed ID: 11340044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimum spring temperatures at the provenance origin drive leaf phenology in sugar maple populations.
    Guo X; Khare S; Silvestro R; Huang J; Sylvain JD; Delagrange S; Rossi S
    Tree Physiol; 2020 Dec; 40(12):1639-1647. PubMed ID: 32705120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth temperature modulates the spatial variability of leaf morphology and chemical elements within crowns of climatically divergent Acer rubrum genotypes.
    Shahba MA; Bauerle WL
    Tree Physiol; 2009 Jul; 29(7):869-77. PubMed ID: 19364703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.
    Harley P; Eller A; Guenther A; Monson RK
    Oecologia; 2014 Sep; 176(1):35-55. PubMed ID: 25015120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests.
    Yu H; Guenther A; Gu D; Warneke C; Geron C; Goldstein A; Graus M; Karl T; Kaser L; Misztal P; Yuan B
    Sci Total Environ; 2017 Oct; 595():149-158. PubMed ID: 28384571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen.
    Maja MM; Kasurinen A; Holopainen T; Julkunen-Tiitto R; Holopainen JK
    Sci Total Environ; 2016 Mar; 547():39-47. PubMed ID: 26780130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia.
    Lim JH; Kim JC; Kim KJ; Son YS; Sunwoo Y; Han JS
    Chemosphere; 2008 Sep; 73(4):470-8. PubMed ID: 18678390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.