These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 32758784)
1. Origin of tungsten and geochemical controls on its occurrence and mobilization in shallow sediments from Fallon, Nevada, USA. Hobson C; Kulkarni HV; Johannesson KH; Bednar A; Tappero R; Mohajerin TJ; Sheppard PR; Witten ML; Hettiarachchi GM; Datta S Chemosphere; 2020 Dec; 260():127577. PubMed ID: 32758784 [TBL] [Abstract][Full Text] [Related]
2. Geochemical parameters influencing tungsten mobility in soils. Bednar AJ; Jones WT; Boyd RE; Ringelberg DB; Larson SL J Environ Qual; 2008; 37(1):229-33. PubMed ID: 18178896 [TBL] [Abstract][Full Text] [Related]
3. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments. Müller G Chemosphere; 2003 Jul; 52(2):371-9. PubMed ID: 12738259 [TBL] [Abstract][Full Text] [Related]
4. Morphological and chemical characteristics of airborne tungsten particles of Fallon, Nevada. Sheppard PR; Toepfer P; Schumacher E; Rhodes K; Ridenour G; Witten ML Microsc Microanal; 2007 Aug; 13(4):296-303. PubMed ID: 17637079 [TBL] [Abstract][Full Text] [Related]
5. Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site. Li D; Seaman JC; Chang HS; Jaffe PR; Koster van Groos P; Jiang DT; Chen N; Lin J; Arthur Z; Pan Y; Scheckel KG; Newville M; Lanzirotti A; Kaplan DI J Environ Radioact; 2014 May; 131():40-6. PubMed ID: 24238918 [TBL] [Abstract][Full Text] [Related]
6. Transformation/dissolution characterization of tungsten and tungsten compounds for aquatic hazard classification. Huntsman P; Skeaff J; Pawlak M; Beaudoin R Integr Environ Assess Manag; 2018 Jul; 14(4):498-508. PubMed ID: 29464838 [TBL] [Abstract][Full Text] [Related]
7. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
8. Using lichen chemistry to assess airborne tungsten and cobalt in Fallon, Nevada. Sheppard PR; Speakman RJ; Ridenour G; Witten ML Environ Monit Assess; 2007 Jul; 130(1-3):511-8. PubMed ID: 17131081 [TBL] [Abstract][Full Text] [Related]
9. Spatial patterns of tungsten and cobalt in surface dust of Fallon, Nevada. Sheppard PR; Speakman RJ; Ridenour G; Glascock MD; Farris C; Witten ML Environ Geochem Health; 2007 Oct; 29(5):405-12. PubMed ID: 17345005 [TBL] [Abstract][Full Text] [Related]
10. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416 [TBL] [Abstract][Full Text] [Related]
11. Comparison of size and geography of airborne tungsten particles in Fallon, Nevada, and Sweet Home, Oregon, with implications for public health. Sheppard PR; Bierman BJ; Rhodes K; Ridenour G; Witten ML J Environ Public Health; 2012; 2012():509458. PubMed ID: 22523506 [TBL] [Abstract][Full Text] [Related]
12. Formation of CoAl layered double hydroxide on the boehmite surface and its role in tungstate sorption. Hur H; Reeder RJ J Environ Sci (China); 2018 Mar; 65():103-115. PubMed ID: 29548381 [TBL] [Abstract][Full Text] [Related]
13. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina). Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830 [TBL] [Abstract][Full Text] [Related]
14. Temporal variability of tungsten and cobalt in Fallon, Nevada. Sheppard PR; Speakman RJ; Ridenour G; Witten ML Environ Health Perspect; 2007 May; 115(5):715-9. PubMed ID: 17520058 [TBL] [Abstract][Full Text] [Related]
15. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications- A review. Shaheen SM; Alessi DS; Tack FMG; Ok YS; Kim KH; Gustafsson JP; Sparks DL; Rinklebe J Adv Colloid Interface Sci; 2019 Mar; 265():1-13. PubMed ID: 30685738 [TBL] [Abstract][Full Text] [Related]
16. Investigations of tungsten mobility in soil using column tests. Bednar AJ; Boyd RE; Jones WT; McGrath CJ; Johnson DR; Chappell MA; Ringelberg DB Chemosphere; 2009 May; 75(8):1049-56. PubMed ID: 19232431 [TBL] [Abstract][Full Text] [Related]
17. Tungstate adsorption onto Italian soils with different characteristics. Petruzzelli G; Pedron F Environ Monit Assess; 2017 Aug; 189(8):379. PubMed ID: 28685371 [TBL] [Abstract][Full Text] [Related]
18. Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: application to Lahontan Reservoir (Nevada, USA). Gandhi N; Bhavsar SP; Diamond ML; Kuwabara JS; Marvin-Dipasquale M; Krabbenhoft DP Environ Toxicol Chem; 2007 Nov; 26(11):2260-73. PubMed ID: 17941724 [TBL] [Abstract][Full Text] [Related]
19. Tungstate (VI) sorption on hematite: An in situ ATR-FTIR probe on the mechanism. Rakshit S; Sallman B; Davantés A; Lefèvre G Chemosphere; 2017 Feb; 168():685-691. PubMed ID: 27836284 [TBL] [Abstract][Full Text] [Related]
20. Scheelite weathering and tungsten (W) mobility in historical oxidic-sulfidic skarn tailings at Yxsjöberg, Sweden. Hällström LPB; Alakangas L; Martinsson O Environ Sci Pollut Res Int; 2020 Feb; 27(6):6180-6192. PubMed ID: 31865574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]