BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 32758816)

  • 1. Evaluating ecosystem functioning following river restoration: the role of hydromorphology, bacteria, and macroinvertebrates.
    Lin Q; Zhang Y; Marrs R; Sekar R; Luo X; Wu N
    Sci Total Environ; 2020 Nov; 743():140583. PubMed ID: 32758816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of habitat restoration on macroinvertebrate communities in Shaoxi rivers, China.
    Lin Q; Zhang Y; Marrs R; Sekar R; Wu N; Luo X
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):677-689. PubMed ID: 34338980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Relationship Between Macrophyte Communities and Macroinvertebrate Communities in an Urban Stream].
    Qu XD; Yu Y; Zhang M; Duan LF; Peng WQ
    Huan Jing Ke Xue; 2018 Feb; 39(2):783-791. PubMed ID: 29964842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale dependency in the hydromorphological control of a stream ecosystem functioning.
    Colas F; Baudoin JM; Gob F; Tamisier V; Valette L; Kreutzenberger K; Lambrigot D; Chauvet E
    Water Res; 2017 May; 115():60-73. PubMed ID: 28259815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Land use effects on leaf litter breakdown in low-order streams draining a rapidly developing tropical watershed in Puerto Rico.
    Torres PJ; Ramírez A
    Rev Biol Trop; 2014 Apr; 62 Suppl 2():129-42. PubMed ID: 25189074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effects of local habitat, anthropogenic stress, and dispersal on stream ecosystems: a mesocosm experiment.
    Turunen J; Louhi P; Mykrä H; Aroviita J; Putkonen E; Huusko A; Muotka T
    Ecol Appl; 2018 Sep; 28(6):1606-1615. PubMed ID: 29874410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems.
    Violin CR; Cada P; Sudduth EB; Hassett BA; Penrose DL; Bernhardt ES
    Ecol Appl; 2011 Sep; 21(6):1932-49. PubMed ID: 21939035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.
    Iñiguez-Armijos C; Rausche S; Cueva A; Sánchez-Rodríguez A; Espinosa C; Breuer L
    Ecol Evol; 2016 Jul; 6(14):4849-65. PubMed ID: 27547318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Leaf-litter breakdown as a tool to assess the functional integrity of high Andean streams of Southern Ecuador].
    Rincón J; Merchán D; Sparer A; Rojas D; Zarate E
    Rev Biol Trop; 2017 Mar; 65(1):321-34. PubMed ID: 29466647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modification of the leaf-bags method to assess spring ecosystem functioning: benthic invertebrates and leaf-litter breakdown in Vera Spring (Central Italy).
    Cristiano G; Cicolani B; Miccoli FP; Di Sabatino A
    PeerJ; 2019; 7():e6250. PubMed ID: 30783561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams.
    Mangadze T; Wasserman RJ; Froneman PW; Dalu T
    Sci Total Environ; 2019 Dec; 695():133910. PubMed ID: 31756874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities.
    Kominoski JS; Marczak LB; Richardson JS
    Ecology; 2011 Jan; 92(1):151-9. PubMed ID: 21560685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain).
    Monroy S; Menéndez M; Basaguren A; Pérez J; Elosegi A; Pozo J
    Sci Total Environ; 2016 Dec; 573():1450-1459. PubMed ID: 27503627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroplastic litter colonization by stream macroinvertebrates relative to that of plant litter: A meta-analysis.
    Ferreira V
    Environ Pollut; 2024 Feb; 342():123108. PubMed ID: 38070646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?
    Danger M; Cornut J; Chauvet E; Chavez P; Elger A; Lecerf A
    Ecology; 2013 Jul; 94(7):1604-13. PubMed ID: 23951720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of anti-inflammatories, beta-blockers and antibiotics on leaf litter breakdown in freshwaters.
    Hughes SR; Kay P; Brown LE
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3956-62. PubMed ID: 26635223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in ecosystem structure and functioning in a low order stream: Implications of land use and season.
    Englert D; Zubrod JP; Schulz R; Bundschuh M
    Sci Total Environ; 2015 Dec; 538():341-9. PubMed ID: 26312408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy).
    Langhans SD; Tockner K
    Oecologia; 2006 Mar; 147(3):501-9. PubMed ID: 16237537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams.
    Four B; Arce E; Danger M; Gaillard J; Thomas M; Banas D
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5452-5468. PubMed ID: 28028701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.