These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 32758831)
1. Contaminant occurrence and migration between high- and low-permeability zones in groundwater systems: A review. You X; Liu S; Dai C; Guo Y; Zhong G; Duan Y Sci Total Environ; 2020 Nov; 743():140703. PubMed ID: 32758831 [TBL] [Abstract][Full Text] [Related]
2. Using MODFLOW and RT3D to simulate diffusion and reaction without discretizing low permeability zones. Esfahani SG; Valocchi AJ; Werth CJ J Contam Hydrol; 2021 May; 239():103777. PubMed ID: 33550040 [TBL] [Abstract][Full Text] [Related]
3. Solute source depletion control of forward and back diffusion through low-permeability zones. Yang M; Annable MD; Jawitz JW J Contam Hydrol; 2016 Oct; 193():54-62. PubMed ID: 27636989 [TBL] [Abstract][Full Text] [Related]
4. Diffusion of solutes from depleting sources into and out of finite low-permeability zones. Yang M; McCurley KL; Annable MD; Jawitz JW J Contam Hydrol; 2019 Feb; 221():127-134. PubMed ID: 30777404 [TBL] [Abstract][Full Text] [Related]
5. Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: A laboratory investigation by box model and image analysis. Tatti F; Papini MP; Sappa G; Raboni M; Arjmand F; Viotti P Sci Total Environ; 2018 May; 622-623():164-171. PubMed ID: 29212053 [TBL] [Abstract][Full Text] [Related]
6. Contaminant back-diffusion from layered aquitards subjected to barrier-controlled source zones. Ding XH; Feng SJ Water Res; 2023 Jun; 238():120021. PubMed ID: 37146396 [TBL] [Abstract][Full Text] [Related]
7. Experimental and numerical evaluation of Groundwater Circulation Wells as a remediation technology for persistent, low permeability contaminant source zones. Tatti F; Petrangeli Papini M; Torretta V; Mancini G; Boni MR; Viotti P J Contam Hydrol; 2019 Apr; 222():89-100. PubMed ID: 30878242 [TBL] [Abstract][Full Text] [Related]
8. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. Parker BL; Chapman SW; Guilbeault MA J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583 [TBL] [Abstract][Full Text] [Related]
9. Contributions of biotic and abiotic pathways to anaerobic trichloroethene transformation in low permeability source zones. Berns EC; Sanford RA; Valocchi AJ; Strathmann TJ; Schaefer CE; Werth CJ J Contam Hydrol; 2019 Jul; 224():103480. PubMed ID: 31006532 [TBL] [Abstract][Full Text] [Related]
10. Field-scale forward and back diffusion through low-permeability zones. Yang M; Annable MD; Jawitz JW J Contam Hydrol; 2017 Jul; 202():47-58. PubMed ID: 28554827 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic insights into contaminant transport dynamics in the saturated porous system in the presence of low permeability region using numerical simulations and temporal moment analysis. Guleria A; Chakma S Environ Sci Pollut Res Int; 2023 Aug; 30(38):89071-89087. PubMed ID: 37452242 [TBL] [Abstract][Full Text] [Related]
12. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Conant B; Cherry JA; Gillham RW J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797 [TBL] [Abstract][Full Text] [Related]
13. Impact of diffuse layer processes on contaminant forward and back diffusion in heterogeneous sandy-clayey domains. Muniruzzaman M; Rolle M J Contam Hydrol; 2021 Feb; 237():103754. PubMed ID: 33517148 [TBL] [Abstract][Full Text] [Related]
14. Modeling EDTA-facilitated cadmium migration in high- and low-permeability systems using MODFLOW and RT3D. You X; Liu S; Esfahani SG; Duan Y; Li J; Dai C; Werth CJ J Contam Hydrol; 2023 May; 256():104171. PubMed ID: 36963123 [TBL] [Abstract][Full Text] [Related]
15. Back diffusion from thin low permeability zones. Yang M; Annable MD; Jawitz JW Environ Sci Technol; 2015 Jan; 49(1):415-22. PubMed ID: 25478850 [TBL] [Abstract][Full Text] [Related]
16. Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites. Adamson DT; de Blanc PC; Farhat SK; Newell CJ Sci Total Environ; 2016 Aug; 562():98-107. PubMed ID: 27096631 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the impact of back diffusion on groundwater cleanup time. Borden RC; Cha KY J Contam Hydrol; 2021 Dec; 243():103889. PubMed ID: 34583230 [TBL] [Abstract][Full Text] [Related]
18. Pore-scale simulations of concentration tails in heterogeneous porous media. Di Palma PR; Parmigiani A; Huber C; Guyennon N; Viotti P J Contam Hydrol; 2017 Oct; 205():47-56. PubMed ID: 28882389 [TBL] [Abstract][Full Text] [Related]
19. Experimental study of the effects of DNAPL distribution on mass rebound. Wilking BT; Rodriguez DR; Illangasekare TH Ground Water; 2013 Mar; 51(2):229-36. PubMed ID: 22834810 [TBL] [Abstract][Full Text] [Related]
20. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone. Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]