These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 3275888)
1. Enhancement and inhibition of benzo[a]pyrene-induced SOS function in E. coli by synthetic antioxidants. Potenberg J; von der Hude W; Bauszus M; Basler A; Kahl R Mutat Res; 1988 Jan; 207(1):7-11. PubMed ID: 3275888 [TBL] [Abstract][Full Text] [Related]
2. Genotoxic activity of two furan analogues of benzo[a]pyrene and their 2-nitro derivatives. Quillardet P; Jenek J; Demerseman P; Royer R; Hofnung M Mutat Res; 1986 Dec; 172(3):223-30. PubMed ID: 3537778 [TBL] [Abstract][Full Text] [Related]
3. [The mutagenicity of organic microcontamination in the environment. III. The mutagenicity of selected herbicides and insecticides in the SOS chromotest]. Mersch-Sundermann V; Hofmeister A; Müller G; Hof H Zentralbl Hyg Umweltmed; 1989 Nov; 189(2):135-46. PubMed ID: 2690845 [TBL] [Abstract][Full Text] [Related]
4. Influence of S9 mix composition on the SOS response in Escherichia coli PQ37 by polycyclic aromatic hydrocarbons. Mersch-Sundermann V; Wintermann F; Kern S; Hof H Mutat Res; 1993 Feb; 291(1):53-60. PubMed ID: 7678915 [TBL] [Abstract][Full Text] [Related]
5. Genotoxicity of monofunctional methanesulphonates in the SOS chromotest as a function of alkylation mechanisms. A comparison with the mutagenicity in S. typhimurium TA100. Eder E; Deininger C; Kütt W Mutat Res; 1989 Mar; 211(1):51-64. PubMed ID: 2537926 [TBL] [Abstract][Full Text] [Related]
6. Induction of SOS repair by monofunctional methanesulphonates in various Escherichia coli strains. Structure-activity relationships in comparison with mutagenicity in Salmonella typhimurium. Eder E; Favre A; Deininger C; Hahn H; Kütt W Mutagenesis; 1989 May; 4(3):179-86. PubMed ID: 2543887 [TBL] [Abstract][Full Text] [Related]
7. Modulation of the H2O2-induced SOS response in Escherichia coli PQ300 by amino acids, metal chelators, antioxidants, and scavengers of reactive oxygen species. Müller J; Janz S Environ Mol Mutagen; 1993; 22(3):157-63. PubMed ID: 8404875 [TBL] [Abstract][Full Text] [Related]
8. Fjord- and bay-region diol-epoxides investigated for stability, SOS induction in Escherichia coli, and mutagenicity in Salmonella typhimurium and mammalian cells. Glatt H; Piée A; Pauly K; Steinbrecher T; Schrode R; Oesch F; Seidel A Cancer Res; 1991 Mar; 51(6):1659-67. PubMed ID: 1900215 [TBL] [Abstract][Full Text] [Related]
9. Quantitation of the relationship between tester cell number inoculated and SOS-inducing potency of 4-nitroquinoline-1-oxide (4-NQO) in an automated version of the SOS chromotest. Janz S; Wolff G; Huttunen T; Raabe F; Storch H J Basic Microbiol; 1989; 29(7):403-11. PubMed ID: 2513384 [TBL] [Abstract][Full Text] [Related]
10. SOS induction of selected naturally occurring substances in Escherichia coli (SOS chromotest). Kevekordes S; Mersch-Sundermann V; Burghaus CM; Spielberger J; Schmeiser HH; Arlt VM; Dunkelberg H Mutat Res; 1999 Sep; 445(1):81-91. PubMed ID: 10521693 [TBL] [Abstract][Full Text] [Related]
11. Induction of SOS-independent mutations by benzo[a]pyrene treatment in Escherichia coli cells deficient in MutY or MutM DNA glycosylases: possible role of oxidative lesions. Urios A; Blanco M Mutat Res; 1996 Sep; 356(2):229-35. PubMed ID: 8841490 [TBL] [Abstract][Full Text] [Related]
12. [Experimental research on the genotoxicity of various root canal antiseptics in the SOS chromotest]. Klimm W; Janz S; Gabert A Zahn Mund Kieferheilkd Zentralbl; 1989; 77(2):128-30. PubMed ID: 2526434 [TBL] [Abstract][Full Text] [Related]
13. Testing human faecal extracts for genotoxic activity with the SOS Chromotest: the importance of controlling for faecal enzyme activity. Bosworth D; Venitt S Mutagenesis; 1986 Mar; 1(2):143-9. PubMed ID: 3146011 [TBL] [Abstract][Full Text] [Related]
14. Induction of SOS response in Escherichia coli strain PQ37 by 16 chemical compounds and human urine extracts. Venier P; Montini R; Zordan M; Clonfero E; Paleologo M; Levis AG Mutagenesis; 1989 Jan; 4(1):51-7. PubMed ID: 2497301 [TBL] [Abstract][Full Text] [Related]
15. The genotoxicity of unsubstituted and nitrated polycyclic aromatic hydrocarbons. Mersch-Sundermann V; Mochayedi S; Kevekordes S; Kern S; Wintermann F Anticancer Res; 1993; 13(6A):2037-43. PubMed ID: 8297112 [TBL] [Abstract][Full Text] [Related]
16. Genotoxicity of polycyclic aromatic hydrocarbons in Escherichia coli PQ37. Mersch-Sundermann V; Mochayedi S; Kevekordes S Mutat Res; 1992 Jan; 278(1):1-9. PubMed ID: 1370113 [TBL] [Abstract][Full Text] [Related]
17. Antigenotoxic activities of crude extracts from Acacia salicina leaves. Mansour HB; Boubaker J; Bouhlel I; Mahmoud A; Bernillon S; Chibani JB; Ghedira K; Chekir-Ghedira L Environ Mol Mutagen; 2007 Jan; 48(1):58-66. PubMed ID: 17177209 [TBL] [Abstract][Full Text] [Related]
18. Genotoxicity assessment of the plasmacytomagenic agent pristane (2.6.10.14-tetramethylpentadecane) and four related alkanes by the SOS chromotest. Janz S; Huttunen T; Herzschuh R; Storch H Arch Geschwulstforsch; 1988; 58(2):73-8. PubMed ID: 3288166 [TBL] [Abstract][Full Text] [Related]
19. Induction of the SOS system in a dam-3 mutant: a diagnostic strain for chemicals causing DNA mismatches. Quillardet P; Hofnung M Mutat Res; 1987 Mar; 177(1):17-26. PubMed ID: 3029581 [TBL] [Abstract][Full Text] [Related]
20. Impact of dimethyl sulfoxide and examples of combined genotoxicity in the SOS chromotest. Gebel T; Koenig A Mutat Res; 1999 Aug; 444(2):405-11. PubMed ID: 10521680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]