These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 32758923)
1. Volatile-char interactions during biomass pyrolysis: Understanding the potential origin of char activity. Huang Y; Liu S; Akhtar MA; Li B; Zhou J; Zhang S; Zhang H Bioresour Technol; 2020 Nov; 316():123938. PubMed ID: 32758923 [TBL] [Abstract][Full Text] [Related]
2. Volatile-char interactions during biomass pyrolysis: Cleavage of C-C bond in a β-5 lignin model dimer by amino-modified graphitized carbon nanotube. Huang Y; Liu S; Zhang J; Syed-Hassan SSA; Hu X; Sun H; Zhu X; Zhou J; Zhang S; Zhang H Bioresour Technol; 2020 Jul; 307():123192. PubMed ID: 32220819 [TBL] [Abstract][Full Text] [Related]
3. Impacts of temperature on evolution of char structure during pyrolysis of lignin. Zhang C; Shao Y; Zhang L; Zhang S; Westerhof RJM; Liu Q; Jia P; Li Q; Wang Y; Hu X Sci Total Environ; 2020 Jan; 699():134381. PubMed ID: 31677466 [TBL] [Abstract][Full Text] [Related]
4. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis. Wang S; Li Z; Bai X; Yi W; Fu P Bioresour Technol; 2018 Nov; 268():323-331. PubMed ID: 30092486 [TBL] [Abstract][Full Text] [Related]
5. Interaction of the lignin-/cellulose-derived char with volatiles of varied origin: Part of the process for evolution of products in pyrolysis. Chen Y; Li C; Zhang L; Chen Q; Zhang S; Xiang J; Hu S; Wang Y; Hu X Chemosphere; 2023 Sep; 336():139248. PubMed ID: 37330062 [TBL] [Abstract][Full Text] [Related]
6. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during co-pyrolysis with biomass. Qian TT; Li DC; Jiang H Environ Sci Technol; 2014 Sep; 48(18):10734-42. PubMed ID: 25154038 [TBL] [Abstract][Full Text] [Related]
8. Properties of chars from the gasification and pyrolysis of rice waste streams towards their valorisation as adsorbent materials. Dias D; Lapa N; Bernardo M; Godinho D; Fonseca I; Miranda M; Pinto F; Lemos F Waste Manag; 2017 Jul; 65():186-194. PubMed ID: 28400156 [TBL] [Abstract][Full Text] [Related]
9. Chemical and structural characterization of char development during lignocellulosic biomass pyrolysis. Mafu LD; Neomagus HWJP; Everson RC; Strydom CA; Carrier M; Okolo GN; Bunt JR Bioresour Technol; 2017 Nov; 243():941-948. PubMed ID: 28738549 [TBL] [Abstract][Full Text] [Related]
10. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets. Hu Q; Yang H; Yao D; Zhu D; Wang X; Shao J; Chen H Bioresour Technol; 2016 Jan; 200():521-7. PubMed ID: 26524250 [TBL] [Abstract][Full Text] [Related]
11. Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere. Zaini IN; García López C; Pretz T; Yang W; Jönsson PG Waste Manag; 2019 Sep; 97():149-163. PubMed ID: 31447022 [TBL] [Abstract][Full Text] [Related]
12. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process. Long J; Song H; Jun X; Sheng S; Lun-Shi S; Kai X; Yao Y Bioresour Technol; 2012 Jul; 116():278-84. PubMed ID: 22525260 [TBL] [Abstract][Full Text] [Related]
13. Steam assisted slow pyrolysis of contaminated biomasses: Effect of plant parts and process temperature on heavy metals fate. Grottola CM; Giudicianni P; Pindozzi S; Stanzione F; Faugno S; Fagnano M; Fiorentino N; Ragucci R Waste Manag; 2019 Feb; 85():232-241. PubMed ID: 30803577 [TBL] [Abstract][Full Text] [Related]
14. Effect of slow pyrolysis conditions on biocarbon yield and properties: Characterization of the volatiles. Babinszki B; Sebestyén Z; Jakab E; Kőhalmi L; Bozi J; Várhegyi G; Wang L; Skreiberg Ø; Czégény Z Bioresour Technol; 2021 Oct; 338():125567. PubMed ID: 34303140 [TBL] [Abstract][Full Text] [Related]
15. Catalytic performance of activated lignite chars on biomass tar cracking. Li C; Zhang H; Gong X; Zhang Y Environ Sci Pollut Res Int; 2023 Apr; 30(20):57331-57339. PubMed ID: 36964466 [TBL] [Abstract][Full Text] [Related]
16. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char. Al-Rahbi AS; Onwudili JA; Williams PT Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946 [TBL] [Abstract][Full Text] [Related]
17. Structure characteristics and gasification reactivity of co-pyrolysis char from lignocellulosic biomass and waste plastics: Effect of polyethylene. Kai X; Wang L; Yang T; Zhang T; Li B; Liu Z; Yan W; Li R Int J Biol Macromol; 2024 Nov; 279(Pt 2):135185. PubMed ID: 39216581 [TBL] [Abstract][Full Text] [Related]
18. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components. Shi X; Wang J Bioresour Technol; 2014 Oct; 170():262-269. PubMed ID: 25151069 [TBL] [Abstract][Full Text] [Related]
19. Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis. Guo DL; Yuan HY; Yin XL; Wu CZ; Wu SB; Zhou ZQ Bioresour Technol; 2014; 152():147-53. PubMed ID: 24291315 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic treatment improves fast pyrolysis product selectivity of softwood and hardwood lignin. Wang L; Ni H; Zhang J; Shi Q; Zhang R; Yu H; Li M Sci Total Environ; 2020 May; 717():137241. PubMed ID: 32070898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]