BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 32759206)

  • 1. Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy.
    Heberle FA; Doktorova M; Scott HL; Skinkle AD; Waxham MN; Levental I
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19943-19952. PubMed ID: 32759206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing lipid membrane structure with cryo-EM: past, present, and future.
    Sharma KD; Heberle FA; Waxham MN
    Emerg Top Life Sci; 2023 Mar; 7(1):55-65. PubMed ID: 36606590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct imaging of liquid domains in membranes by cryo-electron tomography.
    Cornell CE; Mileant A; Thakkar N; Lee KK; Keller SL
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19713-19719. PubMed ID: 32759217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.
    Wu HM; Lin YH; Yen TC; Hsieh CL
    Sci Rep; 2016 Feb; 6():20542. PubMed ID: 26861908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach.
    Sharma KD; Doktorova M; Waxham MN; Heberle FA
    Biophys J; 2024 Apr; ():. PubMed ID: 38689500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology.
    Heberle FA; Doktorova M; Goh SL; Standaert RF; Katsaras J; Feigenson GW
    J Am Chem Soc; 2013 Oct; 135(40):14932-5. PubMed ID: 24041024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the small size of liquid-disordered + liquid-ordered nanodomains.
    Feigenson GW
    Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183685. PubMed ID: 34175299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids.
    Li G; Wang Q; Kakuda S; London E
    J Lipid Res; 2020 May; 61(5):758-766. PubMed ID: 31964764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating the size and stabilization of lipid raft-like domains and using calcium ions as their probe.
    Szekely O; Schilt Y; Steiner A; Raviv U
    Langmuir; 2011 Dec; 27(24):14767-75. PubMed ID: 22066979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas.
    Winkler PM; Regmi R; Flauraud V; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    ACS Nano; 2017 Jul; 11(7):7241-7250. PubMed ID: 28696660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles.
    Živanović V; Kochovski Z; Arenz C; Lu Y; Kneipp J
    J Phys Chem Lett; 2018 Dec; 9(23):6767-6772. PubMed ID: 30421928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells.
    Schürmann M; Frese N; Beyer A; Heimann P; Widera D; Mönkemöller V; Huser T; Kaltschmidt B; Kaltschmidt C; Gölzhäuser A
    Small; 2015 Nov; 11(43):5781-9. PubMed ID: 26436577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from nanodomains to microdomains induced by exposure of lipid monolayers to air.
    Coban O; Popov J; Burger M; Vobornik D; Johnston LJ
    Biophys J; 2007 Apr; 92(8):2842-53. PubMed ID: 17237193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.
    Baumgart T; Hammond AT; Sengupta P; Hess ST; Holowka DA; Baird BA; Webb WW
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3165-70. PubMed ID: 17360623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of cryo-electron microscopy for quantitative analysis of lipid bilayers.
    Heberle FA; Welsch D; Scott HL; Waxham MN
    Biophys Rep (N Y); 2023 Mar; 3(1):100090. PubMed ID: 36593976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy of nanometric liposome adsorption and nanoscopic membrane domain formation.
    Tokumasu F; Jin AJ; Feigenson GW; Dvorak JA
    Ultramicroscopy; 2003; 97(1-4):217-27. PubMed ID: 12801674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic label-free imaging of lipid nanodomains.
    de Wit G; Danial JS; Kukura P; Wallace MI
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12299-303. PubMed ID: 26401022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.