BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32759207)

  • 1. Revealing the origin of multiphasic dynamic behaviors in cyanobacteriochrome.
    Wang D; Li X; Zhang S; Wang L; Yang X; Zhong D
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19731-19736. PubMed ID: 32759207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating Ultrafast Multiphasic Dynamics in the Photoisomerization of Cyanobacteriochrome.
    Wang D; Li X; Wang L; Yang X; Zhong D
    J Phys Chem Lett; 2020 Oct; 11(20):8819-8824. PubMed ID: 32940473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Primary Dynamics and Isomerization Mechanism of a Far-Red Sensing Cyanobacteriochrome.
    Niu K; Wang D; Zhang Y; Biju L; Liu N; Wang X; Wang L; Ren Z; Lu F; Yang X; Zhong D
    J Phys Chem Lett; 2024 May; 15(19):5202-5207. PubMed ID: 38717357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Origin of Ultrafast Multiphasic Dynamics in Photoisomerization of Bacteriophytochrome.
    Wang D; Qin Y; Zhang M; Li X; Wang L; Yang X; Zhong D
    J Phys Chem Lett; 2020 Aug; 11(15):5913-5919. PubMed ID: 32614188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum.
    Fushimi K; Narikawa R
    Curr Opin Struct Biol; 2019 Aug; 57():39-46. PubMed ID: 30831380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria.
    Ikeuchi M; Ishizuka T
    Photochem Photobiol Sci; 2008 Oct; 7(10):1159-67. PubMed ID: 18846279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond photodynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 1. Forward dynamics.
    Kim PW; Freer LH; Rockwell NC; Martin SS; Lagarias JC; Larsen DS
    Biochemistry; 2012 Jan; 51(2):608-18. PubMed ID: 22148715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway.
    Tachibana SR; Tang L; Zhu L; Takeda Y; Fushimi K; Ueda Y; Nakajima T; Kuwasaki Y; Sato M; Narikawa R; Fang C
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond photodynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 2. reverse dynamics.
    Kim PW; Freer LH; Rockwell NC; Martin SS; Lagarias JC; Larsen DS
    Biochemistry; 2012 Jan; 51(2):619-30. PubMed ID: 22148731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle.
    Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M
    Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism.
    Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys.
    Fushimi K; Narikawa R
    Biochem J; 2021 Mar; 478(5):1043-1059. PubMed ID: 33559683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of D
    Hasegawa M; Fushimi K; Miyake K; Nakajima T; Oikawa Y; Enomoto G; Sato M; Ikeuchi M; Narikawa R
    J Biol Chem; 2018 Feb; 293(5):1713-1727. PubMed ID: 29229775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical inhomogeneity in the ultrafast dynamics of the DXCF cyanobacteriochrome Tlr0924.
    Freer LH; Kim PW; Corley SC; Rockwell NC; Zhao L; Thibert AJ; Lagarias JC; Larsen DS
    J Phys Chem B; 2012 Sep; 116(35):10571-81. PubMed ID: 22721495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state.
    Lim S; Yu Q; Rockwell NC; Martin SS; Lagarias JC; Ames JB
    Biomol NMR Assign; 2016 Apr; 10(1):157-61. PubMed ID: 26537963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing.
    Oliinyk OS; Shemetov AA; Pletnev S; Shcherbakova DM; Verkhusha VV
    Nat Commun; 2019 Jan; 10(1):279. PubMed ID: 30655515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis Isomerization of the chromophore in the protein.
    Groenhof G; Bouxin-Cademartory M; Hess B; De Visser SP; Berendsen HJ; Olivucci M; Mark AE; Robb MA
    J Am Chem Soc; 2004 Apr; 126(13):4228-33. PubMed ID: 15053611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen bonding controls excited-state decay of the photoactive yellow protein chromophore.
    Boggio-Pasqua M; Robb MA; Groenhof G
    J Am Chem Soc; 2009 Sep; 131(38):13580-1. PubMed ID: 19728705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary photodynamics of the green/red-absorbing photoswitching regulator of the chromatic adaptation E domain from Fremyella diplosiphon.
    Gottlieb SM; Kim PW; Rockwell NC; Hirose Y; Ikeuchi M; Lagarias JC; Larsen DS
    Biochemistry; 2013 Nov; 52(46):8198-208. PubMed ID: 24147541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary photodynamics of a biomimetic model of photoactive yellow protein (PYP).
    Changenet-Barret P; Loukou C; Ley C; Lacombat F; Plaza P; Mallet JM; Martin MM
    Phys Chem Chem Phys; 2010 Nov; 12(41):13715-23. PubMed ID: 20856983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.