These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 32759307)
1. miR-26a mediates LC-PUFA biosynthesis by targeting the Lxrα-Srebp1 pathway in the marine teleost Chen C; Wang S; Hu Y; Zhang M; He X; You C; Wen X; Monroig Ó; Tocher DR; Li Y J Biol Chem; 2020 Oct; 295(40):13875-13886. PubMed ID: 32759307 [TBL] [Abstract][Full Text] [Related]
2. miR-24 is involved in vertebrate LC-PUFA biosynthesis as demonstrated in marine teleost Siganus canaliculatus. Chen C; Wang S; Zhang M; Chen B; You C; Xie D; Liu Y; Monroig Ó; Tocher DR; Waiho K; Li Y Biochim Biophys Acta Mol Cell Biol Lipids; 2019 May; 1864(5):619-628. PubMed ID: 30684680 [TBL] [Abstract][Full Text] [Related]
3. Identification of miR-145 as a Key Regulator Involved in LC-PUFA Biosynthesis by Targeting Chen C; Zhang M; Li Y; Wang S; Xie D; Wen X; Hu Y; Shen J; He X; You C; Tocher DR; Monroig Ó J Agric Food Chem; 2020 Dec; 68(51):15123-15133. PubMed ID: 33291871 [TBL] [Abstract][Full Text] [Related]
4. MicroRNAs Involved in the Regulation of LC-PUFA Biosynthesis in Teleosts: miR-33 Enhances LC-PUFA Biosynthesis in Siganus canaliculatus by Targeting insig1 which in Turn Upregulates srebp1. Sun JJ; Zheng LG; Chen CY; Zhang JY; You CH; Zhang QH; Ma HY; Monroig Ó; Tocher DR; Wang SQ; Li YY Mar Biotechnol (NY); 2019 Aug; 21(4):475-487. PubMed ID: 31020472 [TBL] [Abstract][Full Text] [Related]
5. The miR-15/16 Cluster Is Involved in the Regulation of Vertebrate LC-PUFA Biosynthesis by Targeting pparγ as Demonostrated in Rabbitfish Siganus canaliculatus. Sun J; Chen C; You C; Liu Y; Ma H; Monroig Ó; Tocher DR; Wang S; Li Y Mar Biotechnol (NY); 2020 Aug; 22(4):475-487. PubMed ID: 32418070 [TBL] [Abstract][Full Text] [Related]
6. Cloning and Characterization of Lxr and Srebp1, and Their Potential Roles in Regulation of LC-PUFA Biosynthesis in Rabbitfish Siganus canaliculatus. Zhang Q; You C; Liu F; Zhu W; Wang S; Xie D; Monroig Ó; Tocher DR; Li Y Lipids; 2016 Sep; 51(9):1051-63. PubMed ID: 27464514 [TBL] [Abstract][Full Text] [Related]
7. miR-146a is involved in the regulation of vertebrate LC-PUFA biosynthesis by targeting elovl5 as demonstrated in rabbitfish Siganus canaliculatus. Chen C; Zhang J; Zhang M; You C; Liu Y; Wang S; Li Y Gene; 2018 Nov; 676():306-314. PubMed ID: 30145362 [TBL] [Abstract][Full Text] [Related]
8. Pparγ Is Involved in the Transcriptional Regulation of Liver LC-PUFA Biosynthesis by Targeting the Δ6Δ5 Fatty Acyl Desaturase Gene in the Marine Teleost Siganus canaliculatus. Li Y; Yin Z; Dong Y; Wang S; Monroig Ó; Tocher DR; You C Mar Biotechnol (NY); 2019 Feb; 21(1):19-29. PubMed ID: 30206714 [TBL] [Abstract][Full Text] [Related]
9. Insulin activates LC-PUFA biosynthesis of hepatocytes by regulating the PI3K/Akt/mTOR/Srebp1 pathway in teleost Siganus canaliculatus. Liu L; Chen C; Dong Y; Cheng Y; You C; Wang S; Ma H; Li Y Comp Biochem Physiol B Biochem Mol Biol; 2022; 260():110734. PubMed ID: 35321854 [TBL] [Abstract][Full Text] [Related]
10. Hnf4α is involved in the regulation of vertebrate LC-PUFA biosynthesis: insights into the regulatory role of Hnf4α on expression of liver fatty acyl desaturases in the marine teleost Siganus canaliculatus. Wang S; Chen J; Jiang D; Zhang Q; You C; Tocher DR; Monroig Ó; Dong Y; Li Y Fish Physiol Biochem; 2018 Jun; 44(3):805-815. PubMed ID: 29352428 [TBL] [Abstract][Full Text] [Related]
11. The miR-33 gene is identified in a marine teleost: a potential role in regulation of LC-PUFA biosynthesis in Siganus canaliculatus. Zhang Q; You C; Wang S; Dong Y; Monroig Ó; Tocher DR; Li Y Sci Rep; 2016 Sep; 6():32909. PubMed ID: 27640649 [TBL] [Abstract][Full Text] [Related]
12. GPR120-ERK1-Srebp1c signaling pathway regulates long-chain polyunsaturated fatty acids biosynthesis in marine teleost Siganus canaliculatus. Dong Y; Xie Z; You C; Li M; Li Y; Zhao J; Xie D; Wang S; Li Y Comp Biochem Physiol B Biochem Mol Biol; 2023; 264():110815. PubMed ID: 36414184 [TBL] [Abstract][Full Text] [Related]
13. miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus. Zhang Q; Xie D; Wang S; You C; Monroig O; Tocher DR; Li Y Biochim Biophys Acta; 2014 Jul; 1841(7):934-43. PubMed ID: 24681164 [TBL] [Abstract][Full Text] [Related]
14. Sp1 is Involved in Vertebrate LC-PUFA Biosynthesis by Upregulating the Expression of Liver Desaturase and Elongase Genes. Li Y; Zhao J; Dong Y; Yin Z; Li Y; Liu Y; You C; Monroig Ó; Tocher DR; Wang S Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614732 [TBL] [Abstract][Full Text] [Related]
15. Hnf4α Is Involved in LC-PUFA Biosynthesis by Up-Regulating Gene Transcription of Elongase in Marine Teleost Li Y; Zeng X; Dong Y; Chen C; You C; Tang G; Chen J; Wang S Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30332813 [TBL] [Abstract][Full Text] [Related]
16. Insulin can up-regulate LC-PUFA biosynthesis with the involvement of Srebp-1c and stimulatory protein 1 (Sp1) in marine teleost Siganus canaliculatus. Dong Y; Liu L; Li M; Xie D; Zhao J; Wang S; You C; Li Y Gene; 2022 Oct; 840():146755. PubMed ID: 35905852 [TBL] [Abstract][Full Text] [Related]
17. Hepatocyte nuclear factor 4α (Hnf4α) is involved in transcriptional regulation of Δ6/Δ5 fatty acyl desaturase (Fad) gene expression in marine teleost Siganus canaliculatus. Dong Y; Wang S; You C; Xie D; Jiang Q; Li Y Comp Biochem Physiol B Biochem Mol Biol; 2020 Jan; 239():110353. PubMed ID: 31525459 [TBL] [Abstract][Full Text] [Related]
18. Cloning, tissue specificity and regulation of expression of genes of four key enzymes related to long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis by ambient salinity during embryogenesis in the marine teleost Siganus guttatus. You C; Miao S; Xie Z; Lin S; Wang S; Chen C; Lin L; Huang Y; Zhou M; Dong Y; Li Y; Zhuang P Comp Biochem Physiol B Biochem Mol Biol; 2024 Jan; 269():110903. PubMed ID: 37717849 [TBL] [Abstract][Full Text] [Related]
19. Establishment of a hepatocyte line for studying biosynthesis of long-chain polyunsaturated fatty acids from a marine teleost, the white-spotted spinefoot Siganus canaliculatus. Liu Y; Zhang QH; Dong YW; You CH; Wang SQ; Li YQ; Li YY J Fish Biol; 2017 Aug; 91(2):603-616. PubMed ID: 28691159 [TBL] [Abstract][Full Text] [Related]
20. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish. Xie D; Chen C; Dong Y; You C; Wang S; Monroig Ó; Tocher DR; Li Y Prog Lipid Res; 2021 Apr; 82():101095. PubMed ID: 33741387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]