BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 32759342)

  • 1. Organismal Protein Homeostasis Mechanisms.
    Hoppe T; Cohen E
    Genetics; 2020 Aug; 215(4):889-901. PubMed ID: 32759342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal
    Lazaro-Pena MI; Cornwell AB; Diaz-Balzac CA; Das R; Ward ZC; Macoretta N; Thakar J; Samuelson AV
    Elife; 2023 Jun; 12():. PubMed ID: 37338980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cell-non-autonomous proteostasis in metazoans.
    O'Brien D; van Oosten-Hawle P
    Essays Biochem; 2016 Oct; 60(2):133-142. PubMed ID: 27744329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity.
    Brehme M; Voisine C
    Dis Model Mech; 2016 Aug; 9(8):823-38. PubMed ID: 27491084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans.
    Das R; Melo JA; Thondamal M; Morton EA; Cornwell AB; Crick B; Kim JH; Swartz EW; Lamitina T; Douglas PM; Samuelson AV
    PLoS Genet; 2017 Oct; 13(10):e1007038. PubMed ID: 29036198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis.
    Lindquist SL; Kelly JW
    Cold Spring Harb Perspect Biol; 2011 Dec; 3(12):. PubMed ID: 21900404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The struggle by Caenorhabditis elegans to maintain proteostasis during aging and disease.
    Kikis EA
    Biol Direct; 2016 Nov; 11(1):58. PubMed ID: 27809888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular chaperone functions in protein folding and proteostasis.
    Kim YE; Hipp MS; Bracher A; Hayer-Hartl M; Hartl FU
    Annu Rev Biochem; 2013; 82():323-55. PubMed ID: 23746257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases.
    Nussbaum-Krammer CI; Morimoto RI
    Dis Model Mech; 2014 Jan; 7(1):31-9. PubMed ID: 24396152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endoplasmic reticulum proteostasis impairment in aging.
    Martínez G; Duran-Aniotz C; Cabral-Miranda F; Vivar JP; Hetz C
    Aging Cell; 2017 Aug; 16(4):615-623. PubMed ID: 28436203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults.
    Boocholez H; Marques FC; Levine A; Roitenberg N; Siddiqui AA; Zhu H; Moll L; Grushko D; Haimson RB; Elami T; Cohen E
    Cell Rep; 2022 Feb; 38(6):110350. PubMed ID: 35139369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating the stress response: lessons for neurodegenerative diseases from C. elegans.
    Prahlad V; Morimoto RI
    Trends Cell Biol; 2009 Feb; 19(2):52-61. PubMed ID: 19112021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases.
    Hekmatimoghaddam S; Zare-Khormizi MR; Pourrajab F
    Biofactors; 2017 Nov; 43(6):737-759. PubMed ID: 26899445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling.
    van Oosten-Hawle P; Morimoto RI
    Genes Dev; 2014 Jul; 28(14):1533-43. PubMed ID: 25030693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germline stem cell arrest inhibits the collapse of somatic proteostasis early in Caenorhabditis elegans adulthood.
    Shemesh N; Shai N; Ben-Zvi A
    Aging Cell; 2013 Oct; 12(5):814-22. PubMed ID: 23734734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone networks: tipping the balance in protein folding diseases.
    Voisine C; Pedersen JS; Morimoto RI
    Neurobiol Dis; 2010 Oct; 40(1):12-20. PubMed ID: 20472062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-Nonautonomous Regulation of Proteostasis in Aging and Disease.
    Morimoto RI
    Cold Spring Harb Perspect Biol; 2020 Apr; 12(4):. PubMed ID: 30962274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the proteostasis network by the neuronal system.
    Zhu H; Cohen E
    Front Mol Biosci; 2023; 10():1290118. PubMed ID: 38016061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses.
    van Oosten-Hawle P; Morimoto RI
    J Exp Biol; 2014 Jan; 217(Pt 1):129-36. PubMed ID: 24353212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein homeostasis as a therapeutic target for diseases of protein conformation.
    Calamini B; Morimoto RI
    Curr Top Med Chem; 2012; 12(22):2623-40. PubMed ID: 23339312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.