These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32759644)

  • 41. Development and application of dengue virus reverse genetic systems.
    Davidson AD
    Methods Mol Biol; 2014; 1138():113-30. PubMed ID: 24696334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus.
    Pretorius JM; Huismans H; Theron J
    Virology; 2015 Dec; 486():71-7. PubMed ID: 26408855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Utilizing fowlpox virus recombinants to generate defective RNAs of the coronavirus infectious bronchitis virus.
    Evans S; Cavanagh D; Britton P
    J Gen Virol; 2000 Dec; 81(Pt 12):2855-2865. PubMed ID: 11086116
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A single-plasmid reverse genetics system for the rescue of non-segmented negative-strand RNA viruses from cloned full-length cDNA.
    Peeters B; de Leeuw O
    J Virol Methods; 2017 Oct; 248():187-190. PubMed ID: 28743584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tet-Inducible Production of Infectious Zika Virus from the Full-Length cDNA Clones of African- and Asian-Lineage Strains.
    Zhang L; Ji W; Lyu S; Qiao L; Luo G
    Viruses; 2018 Dec; 10(12):. PubMed ID: 30544871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel porcine parvovirus DNA-launched infectious clone carrying stable double labels as an effective genetic platform.
    Chen S; Miao B; Chen N; Zhang X; Zhang X; Du Q; Huang Y; Tong D
    Vet Microbiol; 2020 Jan; 240():108502. PubMed ID: 31902505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Generation of recombinant pestiviruses using a full-genome amplification strategy.
    Rasmussen TB; Reimann I; Uttenthal A; Leifer I; Depner K; Schirrmeier H; Beer M
    Vet Microbiol; 2010 Apr; 142(1-2):13-7. PubMed ID: 19836906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bungowannah virus in the affected pig population: a retrospective genetic analysis.
    Dalmann A; Wernike K; Reimann I; Finlaison DS; Kirkland PD; Beer M
    Virus Genes; 2019 Jun; 55(3):298-303. PubMed ID: 30706196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase.
    van Gennip HG; van Rijn PA; Widjojoatmodjo MN; Moormann RJ
    J Virol Methods; 1999 Mar; 78(1-2):117-28. PubMed ID: 10204702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bungowannah virus--a probable new species of pestivirus--what have we found in the last 10 years?
    Kirkland PD; Read AJ; Frost MJ; Finlaison DS
    Anim Health Res Rev; 2015 Jun; 16(1):60-3. PubMed ID: 26050573
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient rescue of infectious bursal disease virus using a simplified RNA polymerase II-based reverse genetics strategy.
    Ben Abdeljelil N; Khabouchi N; Mardassi H
    Arch Virol; 2008; 153(6):1131-7. PubMed ID: 18392769
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Comparison of the rescue efficiency of Sendai virus minigenome mediated by CMV and T7 promoter].
    Wei GC; Tian WH; Wang G; Liu YF; Yu CJ; Dong XY; Ling H; Wu XB
    Bing Du Xue Bao; 2012 May; 28(3):237-45. PubMed ID: 22764526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid Reverse Genetics Systems for Rhabdoviruses: From Forward to Reverse and Back Again.
    Nolden T; Finke S
    Methods Mol Biol; 2017; 1602():171-184. PubMed ID: 28508221
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highs and Lows in Calicivirus Reverse Genetics.
    Álvarez ÁL; Arboleya A; Abade Dos Santos FA; García-Manso A; Nicieza I; Dalton KP; Parra F; Martín-Alonso JM
    Viruses; 2024 May; 16(6):. PubMed ID: 38932159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A reverse-genetics system for Influenza A virus using T7 RNA polymerase.
    de Wit E; Spronken MIJ; Vervaet G; Rimmelzwaan GF; Osterhaus ADME; Fouchier RAM
    J Gen Virol; 2007 Apr; 88(Pt 4):1281-1287. PubMed ID: 17374773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal.
    Yanai H; Hayashi Y; Watanabe Y; Ohtaki N; Kobayashi T; Nozaki Y; Ikuta K; Tomonaga K
    Microbes Infect; 2006 May; 8(6):1522-9. PubMed ID: 16697679
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rev-binding aptamer and CMV promoter act as decoys to inhibit HIV replication.
    Konopka K; Lee NS; Rossi J; Düzgüneş N
    Gene; 2000 Sep; 255(2):235-44. PubMed ID: 11024283
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Establishment of a Reverse Genetics System for Influenza D Virus.
    Ishida H; Murakami S; Kamiki H; Matsugo H; Takenaka-Uema A; Horimoto T
    J Virol; 2020 May; 94(10):. PubMed ID: 32102883
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity.
    Lee C; Calvert JG; Welch SK; Yoo D
    Virology; 2005 Jan; 331(1):47-62. PubMed ID: 15582652
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The viral envelope is not sufficient to transfer the unique broad cell tropism of Bungowannah virus to a related pestivirus.
    Richter M; Reimann I; Schirrmeier H; Kirkland PD; Beer M
    J Gen Virol; 2014 Oct; 95(Pt 10):2216-2222. PubMed ID: 24973239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.