These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 32759669)
1. Experimental Investigation of Stability of Silica Nanoparticles at Reservoir Conditions for Enhanced Oil-Recovery Applications. Li S; Ng YH; Lau HC; Torsæter O; Stubbs LP Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759669 [TBL] [Abstract][Full Text] [Related]
2. High Salinity and High Temperature Stable Colloidal Silica Nanoparticles with Wettability Alteration Ability for EOR Applications. Hadia NJ; Ng YH; Stubbs LP; Torsæter O Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799757 [TBL] [Abstract][Full Text] [Related]
3. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system. Adil M; Mohd Zaid H; Raza F; Agam MA PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369 [TBL] [Abstract][Full Text] [Related]
4. Experimental Investigation of Polymer-Coated Silica Nanoparticles for EOR under Harsh Reservoir Conditions of High Temperature and Salinity. Bila A; Torsæter O Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803521 [TBL] [Abstract][Full Text] [Related]
5. Surface modification of nanoparticles for enhanced applicability of nanofluids in harsh reservoir conditions: A comprehensive review for improved oil recovery. Khoramian R; Issakhov M; Pourafshary P; Gabdullin M; Sharipova A Adv Colloid Interface Sci; 2024 Nov; 333():103296. PubMed ID: 39241391 [TBL] [Abstract][Full Text] [Related]
6. Experimental Investigation of Polymer-Coated Silica Nanoparticles for Enhanced Oil Recovery. Bila A; Stensen JÅ; Torsæter O Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31159232 [TBL] [Abstract][Full Text] [Related]
8. Responsive Stabilization of Nanoparticles for Extreme Salinity and High-Temperature Reservoir Applications. Ranka M; Brown P; Hatton TA ACS Appl Mater Interfaces; 2015 Sep; 7(35):19651-8. PubMed ID: 26278070 [TBL] [Abstract][Full Text] [Related]
9. Laboratory Investigation of Nanofluid-Assisted Polymer Flooding in Carbonate Reservoirs. Ulasbek K; Hashmet MR; Pourafshary P; Muneer R Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500880 [TBL] [Abstract][Full Text] [Related]
10. Mechanism and Performance Analysis of Nanoparticle-Polymer Fluid for Enhanced Oil Recovery: A Review. Sun Y; Zhang W; Li J; Han R; Lu C Molecules; 2023 May; 28(11):. PubMed ID: 37298805 [TBL] [Abstract][Full Text] [Related]
11. Surfactant-Augmented Functional Silica Nanoparticle Based Nanofluid for Enhanced Oil Recovery at High Temperature and Salinity. Zhou Y; Wu X; Zhong X; Sun W; Pu H; Zhao JX ACS Appl Mater Interfaces; 2019 Dec; 11(49):45763-45775. PubMed ID: 31729855 [TBL] [Abstract][Full Text] [Related]
12. Comparative dataset on the characterization of natural polymers and nanocomposites for enhanced oil recovery. Sowunmi A; Orodu O; Efeovbokhan V; Ogundare S Data Brief; 2020 Dec; 33():106506. PubMed ID: 33294507 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of colloidal silica nanofluid and assessment of its impact on interfacial tension (IFT) and wettability for enhanced oil recovery (EOR). Mansouri Zadeh M; Amiri F; Hosseni S; Ghamarpoor R Sci Rep; 2024 Jan; 14(1):325. PubMed ID: 38172240 [TBL] [Abstract][Full Text] [Related]
14. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR). Adil M; Lee K; Mohd Zaid H; Ahmad Latiff NR; Alnarabiji MS PLoS One; 2018; 13(2):e0193518. PubMed ID: 29489897 [TBL] [Abstract][Full Text] [Related]
15. Insights into the Effects of Pore Size Distribution on the Flowing Behavior of Carbonate Rocks: Linking a Nano-Based Enhanced Oil Recovery Method to Rock Typing. Rezaei A; Abdollahi H; Derikvand Z; Hemmati-Sarapardeh A; Mosavi A; Nabipour N Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443641 [TBL] [Abstract][Full Text] [Related]
16. Preparation of Amphiphilic Janus-SiO Tang S; Sun Z; Dong Y; Zhu Y; Hu H; Wang R; Liao H; Dai Q ACS Omega; 2024 Feb; 9(5):5838-5845. PubMed ID: 38343949 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Oil Recovery by a Suspension of Core-Shell Polymeric Nanoparticles in Heterogeneous Low-Permeability Oil Reservoirs. Long Y; Wang R; Zhu B; Huang X; Leng Z; Chen L; Song F Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30979030 [TBL] [Abstract][Full Text] [Related]
18. Newly engineered alumina quantum dot-based nanofluid in enhanced oil recovery at reservoir conditions. Izadi N; Nasernejad B Sci Rep; 2022 Jun; 12(1):9505. PubMed ID: 35680935 [TBL] [Abstract][Full Text] [Related]
19. Development and Evaluation from Laboratory to Field Trial of a Dual-Purpose Fracturing Nanofluid: Inhibition of Associated Formation Damage and Increasing Heavy Crude Oil Mobility. Giraldo MA; Zabala RD; Bahamón JI; Ulloa JM; Usurriaga JM; Cárdenas JC; Mazo C; Guzmán JD; Lopera SH; Franco CA; Cortés FB Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808033 [TBL] [Abstract][Full Text] [Related]
20. The role of silica nanoparticles on long-term room-temperature stabilization of water-in-oil emulsions containing microalgae. Fernández L; Scher H; VanderGheynst JS Lett Appl Microbiol; 2015 Dec; 61(6):568-72. PubMed ID: 26388196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]