These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 32759717)
1. Compostable Polylactide and Cellulose Based Packaging for Fresh-Cut Cherry Tomatoes: Performance Evaluation and Influence of Sterilization Treatment. Rapisarda M; Patanè C; Pellegrino A; Malvuccio A; Rizzo V; Muratore G; Rizzarelli P Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32759717 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of biodegradable based packaging used for red meat storage during shelf-life: A pilot study. Panseri S; Martino PA; Cagnardi P; Celano G; Tedesco D; Castrica M; Balzaretti C; Chiesa LM Food Chem; 2018 May; 249():22-29. PubMed ID: 29407927 [TBL] [Abstract][Full Text] [Related]
3. Physical, Mechanical, and Structural Properties of the Polylactide and Polybutylene Adipate Terephthalate (PBAT)-Based Biodegradable Polymer during Compost Storage. Myalenko D; Fedotova O Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050232 [TBL] [Abstract][Full Text] [Related]
4. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Asgher M; Qamar SA; Bilal M; Iqbal HMN Food Res Int; 2020 Nov; 137():109625. PubMed ID: 33233213 [TBL] [Abstract][Full Text] [Related]
5. Gas permeability and thermal behavior of polypropylene films used for packaging minimally processed fresh-cut potatoes: a case study. Siracusa V; Blanco I; Romani S; Tylewicz U; Dalla Rosa M J Food Sci; 2012 Oct; 77(10):E264-72. PubMed ID: 22946743 [TBL] [Abstract][Full Text] [Related]
6. Lab-scale and full-scale industrial composting of biodegradable plastic blends for packaging. Chong ZK; Hofmann A; Haye M; Wilson S; Sohoo I; Alassali A; Kuchta K Open Res Eur; 2022; 2():101. PubMed ID: 38420136 [TBL] [Abstract][Full Text] [Related]
7. Gelatin- and Papaya-Based Biodegradable and Edible Packaging Films to Counter Plastic Waste Generation. Ashfaq J; Channa IA; Shaikh AA; Chandio AD; Shah AA; Bughio B; Birmahani A; Alshehri S; Ghoneim MM Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160991 [TBL] [Abstract][Full Text] [Related]
8. Characteristic Improvement of a Carrageenan-Based Bionanocomposite Polymer Film Containing Montmorillonite as Food Packaging through the Addition of Silver and Cerium Oxide Nanoparticles. Genecya G; Adhika DR; Sutrisno W; Wungu TDK ACS Omega; 2023 Oct; 8(42):39194-39202. PubMed ID: 37901572 [TBL] [Abstract][Full Text] [Related]
9. Chitosan-based films blended with moringa leaves and MgO nanoparticles for application in active food packaging. Mohamad EA; Shehata AM; Abobah AM; Kholief AT; Ahmed MA; Abdelhakeem ME; Dawood NK; Mohammed HS Int J Biol Macromol; 2023 Dec; 253(Pt 6):127045. PubMed ID: 37776934 [TBL] [Abstract][Full Text] [Related]
10. Green interconnected network structure of chitosan-microcrystalline cellulose-lignin biopolymer film for active packaging applications. Muhammed AP; Thangarasu S; Oh TH Int J Biol Macromol; 2023 Dec; 253(Pt 7):127471. PubMed ID: 37863142 [TBL] [Abstract][Full Text] [Related]
11. Impact of Antioxidant-Enriched Edible Gel Coatings and Bio-Based Packaging on Cherry Tomato Preservation. Giacondino C; De Bruno A; Puntorieri D; Pizzimenti M; Piscopo A Gels; 2024 Aug; 10(9):. PubMed ID: 39330151 [TBL] [Abstract][Full Text] [Related]
12. Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Zhou X; Yang R; Wang B; Chen K Carbohydr Polym; 2019 Oct; 222():114912. PubMed ID: 31320083 [TBL] [Abstract][Full Text] [Related]
13. Quality and Shelf-Life Stability of Pork Meat Fillets Packaged in Multilayer Polylactide Films. Hernández-García E; Vargas M; Torres-Giner S Foods; 2022 Feb; 11(3):. PubMed ID: 35159576 [TBL] [Abstract][Full Text] [Related]
14. Obtention and Study of Polyurethane-Based Active Packaging with Curcumin and/or Chitosan Additives for Fruits and Vegetables-Part I: Analysis of Morphological, Mechanical, Barrier, and Migration Properties. Ruiz D; Uscátegui YL; Diaz L; Arrieta-Pérez RR; Gómez-Tejedor JA; Valero MF Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006180 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Arun R; Shruthy R; Preetha R; Sreejit V Chemosphere; 2022 Mar; 291(Pt 1):132786. PubMed ID: 34762882 [TBL] [Abstract][Full Text] [Related]
17. Modified cellulose nanocrystals enhanced polycaprolactone multifunctional films with barrier, UV-blocking and antimicrobial properties for food packaging. Alkassfarity AN; Yassin MA; Abdel Rehim MH; Liu L; Jiao Z; Wang B; Wei Z Int J Biol Macromol; 2024 Mar; 261(Pt 2):129871. PubMed ID: 38309396 [TBL] [Abstract][Full Text] [Related]
18. Biodegradable Nanofibrillated Cellulose/Poly-(butylene adipate-co-terephthalate) Composite Film with Enhanced Barrier Properties for Food Packaging. Zhou X; Yin G; Huang Y; Li Y; Xie D Molecules; 2023 Mar; 28(6):. PubMed ID: 36985663 [TBL] [Abstract][Full Text] [Related]
19. Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Di Liberto EA; Dintcheva NT Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475252 [TBL] [Abstract][Full Text] [Related]
20. Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. Pasquier E; Mattos BD; Koivula H; Khakalo A; Belgacem MN; Rojas OJ; Bras J ACS Appl Mater Interfaces; 2022 Jul; 14(26):30236-30245. PubMed ID: 35727693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]