BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32759767)

  • 1. Parallel-Channel Electrotaxis and Neuron Screening of
    Youssef K; Archonta D; Kubiseski T; Tandon A; Rezai P
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32759767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic-based electrotaxis for on-demand quantitative analysis of Caenorhabditis elegans' locomotion.
    Tong J; Rezai P; Salam S; Selvaganapathy PR; Gupta BP
    J Vis Exp; 2013 May; (75):e50226. PubMed ID: 23665669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying Parkinson's disease using Caenorhabditis elegans models in microfluidic devices.
    Youssef K; Tandon A; Rezai P
    Integr Biol (Camb); 2019 May; 11(5):186-207. PubMed ID: 31251339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated microfluidic system for screening Caenorhabditis elegans behaviors using electrotaxis.
    Liu D; Gupta B; Selvaganapathy PR
    Biomicrofluidics; 2016 Jan; 10(1):014117. PubMed ID: 26909123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic phenotype analysis system reveals function of sensory and dopaminergic neuron signaling in C. elegans electrotactic swimming behavior.
    Salam S; Ansari A; Amon S; Rezai P; Selvaganapathy PR; Mishra RK; Gupta BP
    Worm; 2013 Apr; 2(2):e24558. PubMed ID: 24058875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-γ-(L-glutamyl)-L-selenomethionine shows neuroprotective effects against Parkinson's disease associated with SKN-1/Nrf2 and TRXR-1 in Caenorhabditis elegans.
    Chang CH; Wei CC; Ho CT; Liao VH
    Phytomedicine; 2021 Nov; 92():153733. PubMed ID: 34537465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrotaxis of Caenorhabditis elegans in a microfluidic environment.
    Rezai P; Siddiqui A; Selvaganapathy PR; Gupta BP
    Lab Chip; 2010 Jan; 10(2):220-6. PubMed ID: 20066250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holothuria scabra extracts exhibit anti-Parkinson potential in C. elegans: A model for anti-Parkinson testing.
    Chalorak P; Jattujan P; Nobsathian S; Poomtong T; Sobhon P; Meemon K
    Nutr Neurosci; 2018 Jul; 21(6):427-438. PubMed ID: 28276260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical sorting of Caenorhabditis elegans.
    Rezai P; Salam S; Selvaganapathy PR; Gupta BP
    Lab Chip; 2012 Apr; 12(10):1831-40. PubMed ID: 22460920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient microfluidic sorting device for synchronizing developmental stages of C. elegans based on deflecting electrotaxis.
    Wang X; Hu R; Ge A; Hu L; Wang S; Feng X; Du W; Liu BF
    Lab Chip; 2015 Jun; 15(11):2513-21. PubMed ID: 25963054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans.
    Shi W; Wen H; Lu Y; Shi Y; Lin B; Qin J
    Lab Chip; 2010 Nov; 10(21):2855-63. PubMed ID: 20882233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectively controlled microfluidic trap for spatiotemporal analysis of the electrotaxis of Caenorhabditis elegans.
    Yoon S; Yeo M; Kim H; Jeon TJ; Kim SM
    Electrophoresis; 2019 Feb; 40(3):431-436. PubMed ID: 30039534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sorting strategy for C. elegans based on size-dependent motility and electrotaxis in a micro-structured channel.
    Han B; Kim D; Ko UH; Shin JH
    Lab Chip; 2012 Oct; 12(20):4128-34. PubMed ID: 22864253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-Parkinsonian effects of Bacopa monnieri: insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson's disease.
    Jadiya P; Khan A; Sammi SR; Kaur S; Mir SS; Nazir A
    Biochem Biophys Res Commun; 2011 Oct; 413(4):605-10. PubMed ID: 21925152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C. elegans electrotaxis behavior is modulated by heat shock response and unfolded protein response signaling pathways.
    Taylor SKB; Minhas MH; Tong J; Selvaganapathy PR; Mishra RK; Gupta BP
    Sci Rep; 2021 Feb; 11(1):3115. PubMed ID: 33542359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A programmable microvalve-based microfluidic array for characterization of neurotoxin-induced responses of individual C. elegans.
    Ma H; Jiang L; Shi W; Qin J; Lin B
    Biomicrofluidics; 2009 Dec; 3(4):44114. PubMed ID: 20216976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabditis elegans under hyperglycemic conditions using a microfluidic chip.
    Sofela S; Sahloul S; Bhattacharjee S; Bose A; Usman U; Song YA
    Integr Biol (Camb); 2020 Jun; 12(6):150-160. PubMed ID: 32510148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-linolenic acid suppresses dopaminergic neurodegeneration induced by 6-OHDA in C. elegans.
    Shashikumar S; Pradeep H; Chinnu S; Rajini PS; Rajanikant GK
    Physiol Behav; 2015 Nov; 151():563-9. PubMed ID: 26300470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcorynoline attenuates dopaminergic neuron degeneration and α-synuclein aggregation in animal models of Parkinson's disease.
    Fu RH; Wang YC; Chen CS; Tsai RT; Liu SP; Chang WL; Lin HL; Lu CH; Wei JR; Wang ZW; Shyu WC; Lin SZ
    Neuropharmacology; 2014 Jul; 82():108-20. PubMed ID: 23973292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic electric parallel egg-laying assay and application to in-vivo toxicity screening of microplastics using C. elegans.
    Youssef K; Archonta D; Kubiseski TJ; Tandon A; Rezai P
    Sci Total Environ; 2021 Aug; 783():147055. PubMed ID: 34088132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.