These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 32759822)
1. The Alleviation of Photosynthetic Damage in Tomato under Drought and Cold Stress by High CO Zhou R; Wan H; Jiang F; Li X; Yu X; Rosenqvist E; Ottosen CO Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32759822 [TBL] [Abstract][Full Text] [Related]
3. Interactive effects of elevated CO Zhou R; Yu X; Wen J; Jensen NB; Dos Santos TM; Wu Z; Rosenqvist E; Ottosen CO BMC Plant Biol; 2020 Jun; 20(1):260. PubMed ID: 32505202 [TBL] [Abstract][Full Text] [Related]
4. Melatonin mitigates drought stress by increasing sucrose synthesis and suppressing abscisic acid biosynthesis in tomato seedlings. Jahan MS; Yang JY; Althaqafi MM; Alharbi BM; Wu HY; Zhou XB Physiol Plant; 2024; 176(4):e14457. PubMed ID: 39108053 [TBL] [Abstract][Full Text] [Related]
5. Exogenous Melatonin Improves Tolerance to Water Deficit by Promoting Cuticle Formation in Tomato Plants. Ding F; Wang G; Wang M; Zhang S Molecules; 2018 Jul; 23(7):. PubMed ID: 30004432 [TBL] [Abstract][Full Text] [Related]
6. Atmospheric drought and low light impede mycorrhizal effects on leaf photosynthesis-a glasshouse study on tomato under naturally fluctuating environmental conditions. Bitterlich M; Franken P; Graefe J Mycorrhiza; 2019 Jan; 29(1):13-28. PubMed ID: 30382414 [TBL] [Abstract][Full Text] [Related]
7. Melatonin mediates elevated carbon dioxide-induced photosynthesis and thermotolerance in tomato. Hasan MK; Xing QF; Zhou CY; Wang KX; Xu T; Yang P; Qi ZY; Shao SJ; Ahammed GJ; Zhou J J Pineal Res; 2023 Apr; 74(3):e12858. PubMed ID: 36732033 [TBL] [Abstract][Full Text] [Related]
8. Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Zhang Z; Cao B; Gao S; Xu K Protoplasma; 2019 Jul; 256(4):1013-1024. PubMed ID: 30805718 [TBL] [Abstract][Full Text] [Related]
9. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis following cold stress in Elymus nutans Griseb. Fu J; Gates RN; Xu Y; Hu T J Photochem Photobiol B; 2016 Oct; 163():30-9. PubMed ID: 27533848 [TBL] [Abstract][Full Text] [Related]
10. Drought stress delays photosynthetic induction and accelerates photoinhibition under short-term fluctuating light in tomato. Sun H; Shi Q; Liu NY; Zhang SB; Huang W Plant Physiol Biochem; 2023 Mar; 196():152-161. PubMed ID: 36706694 [TBL] [Abstract][Full Text] [Related]
11. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Mishra KB; Iannacone R; Petrozza A; Mishra A; Armentano N; La Vecchia G; TrtĂlek M; Cellini F; Nedbal L Plant Sci; 2012 Jan; 182():79-86. PubMed ID: 22118618 [TBL] [Abstract][Full Text] [Related]
12. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Zhu M; Chen G; Zhang J; Zhang Y; Xie Q; Zhao Z; Pan Y; Hu Z Plant Cell Rep; 2014 Nov; 33(11):1851-63. PubMed ID: 25063324 [TBL] [Abstract][Full Text] [Related]
13. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. Loukehaich R; Wang T; Ouyang B; Ziaf K; Li H; Zhang J; Lu Y; Ye Z J Exp Bot; 2012 Sep; 63(15):5593-606. PubMed ID: 22915741 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Duc NH; Csintalan Z; Posta K Plant Physiol Biochem; 2018 Nov; 132():297-307. PubMed ID: 30245343 [TBL] [Abstract][Full Text] [Related]
15. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. Zhou R; Yu X; Ottosen CO; Rosenqvist E; Zhao L; Wang Y; Yu W; Zhao T; Wu Z BMC Plant Biol; 2017 Jan; 17(1):24. PubMed ID: 28122507 [TBL] [Abstract][Full Text] [Related]
16. The balance of survival: Comparative drought response in wild and domesticated tomatoes. Lupo Y; Moshelion M Plant Sci; 2024 Feb; 339():111928. PubMed ID: 37992898 [TBL] [Abstract][Full Text] [Related]
17. Elevated CO Li B; Feng Y; Zong Y; Zhang D; Hao X; Li P Plant Physiol Biochem; 2020 Sep; 154():105-114. PubMed ID: 32535322 [TBL] [Abstract][Full Text] [Related]
18. Physiological analysis and transcriptome sequencing reveal the effects of combined cold and drought on tomato leaf. Zhou R; Yu X; Zhao T; Ottosen CO; Rosenqvist E; Wu Z BMC Plant Biol; 2019 Aug; 19(1):377. PubMed ID: 31455231 [TBL] [Abstract][Full Text] [Related]
19. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery. Sengupta D; Guha A; Reddy AR J Photochem Photobiol B; 2013 Oct; 127():170-81. PubMed ID: 24050991 [TBL] [Abstract][Full Text] [Related]
20. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Saminathan T; Alvarado A; Lopez C; Shinde S; Gajanayake B; Abburi VL; Vajja VG; Jagadeeswaran G; Raja Reddy K; Nimmakayala P; Reddy UK Funct Integr Genomics; 2019 Jan; 19(1):171-190. PubMed ID: 30244303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]