These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32759947)

  • 21. The correspondence of vocal tract resonance with volumes obtained from magnetic resonance images.
    Moore CA
    J Speech Hear Res; 1992 Oct; 35(5):1009-23. PubMed ID: 1447912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method.
    Takemoto H; Mokhtari P; Kitamura T
    J Acoust Soc Am; 2010 Dec; 128(6):3724-38. PubMed ID: 21218904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vocal tract area function estimation from midsagittal dimensions with CT scans and a vocal tract cast: modeling the transition with two sets of coefficients.
    Perrier P; Boë LJ; Sock R
    J Speech Hear Res; 1992 Feb; 35(1):53-67. PubMed ID: 1735977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Some acoustic and aerodynamic characteristics of pharyngeal consonants in Iraqi Arabic.
    Butcher A; Ahmad K
    Phonetica; 1987; 44(3):156-72. PubMed ID: 3452835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study.
    Clément P; Hans S; Hartl DM; Maeda S; Vaissière J; Brasnu D
    J Voice; 2007 Sep; 21(5):522-30. PubMed ID: 16581228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.
    Bouchard KE; Conant DF; Anumanchipalli GK; Dichter B; Chaisanguanthum KS; Johnson K; Chang EF
    PLoS One; 2016; 11(3):e0151327. PubMed ID: 27019106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utterance-based proposed spot diagnostic system of vocal tract malfunction.
    Fayed ZT
    Biomed Sci Instrum; 2001; 37():485-91. PubMed ID: 11347439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Weak biases emerging from vocal tract anatomy shape the repeated transmission of vowels.
    Dediu D; Janssen R; Moisik SR
    Nat Hum Behav; 2019 Oct; 3(10):1107-1115. PubMed ID: 31427785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perception of Dutch vowels by Cypriot Greek listeners: To what extent can listeners' patterns be predicted by acoustic and perceptual similarity?
    Georgiou GP; Dimitriou D
    Atten Percept Psychophys; 2023 Oct; 85(7):2459-2474. PubMed ID: 37740154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.
    Echternach M; Birkholz P; Traser L; Flügge TV; Kamberger R; Burk F; Burdumy M; Richter B
    J Acoust Soc Am; 2015 May; 137(5):2586-95. PubMed ID: 25994691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inversion of articulatory-to-acoustic transformation in the vocal tract by a computer-sorting technique.
    Atal BS; Chang JJ; Mathews MV; Tukey JW
    J Acoust Soc Am; 1978 May; 63(5):1535-53. PubMed ID: 690333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic and perceptual similarity of North German and American English vowels.
    Strange W; Bohn OS; Trent SA; Nishi K
    J Acoust Soc Am; 2004 Apr; 115(4):1791-807. PubMed ID: 15101657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Education in acoustics and speech science using vocal-tract models.
    Arai T
    J Acoust Soc Am; 2012 Mar; 131(3):2444-54. PubMed ID: 22423792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An acoustical study of sound production in biphonic singing, Xöömij.
    Adachi S; Yamada M
    J Acoust Soc Am; 1999 May; 105(5):2920-32. PubMed ID: 10335641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D dynamic MRI of the vocal tract during natural speech.
    Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS
    Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Listening to different speakers: on the time-course of perceptual compensation for vocal-tract characteristics.
    Sjerps MJ; Mitterer H; McQueen JM
    Neuropsychologia; 2011 Dec; 49(14):3831-46. PubMed ID: 22001313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall.
    Fleischer M; Pinkert S; Mattheus W; Mainka A; Mürbe D
    Biomech Model Mechanobiol; 2015 Aug; 14(4):719-33. PubMed ID: 25416844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-inspired evolutionary oral tract shape modeling for physical modeling vocal synthesis.
    Howard DM; Tyrrell AM; Murphy DT; Cooper C; Mullen J
    J Voice; 2009 Jan; 23(1):11-20. PubMed ID: 17981014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Objective speech outcomes after surgical treatment for oral cancer: An acoustic analysis of a spontaneous speech corpus containing 32.850 tokens.
    Tienkamp TB; van Son RJJH; Halpern BM
    J Commun Disord; 2023; 101():106292. PubMed ID: 36521253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perturbation Measurements on the Degree of Naturalness of Synthesized Vowels.
    Yamasaki R; Montagnoli A; Murano EZ; Gebrim E; Hachiya A; Lopes da Silva JV; Behlau M; Tsuji D
    J Voice; 2017 May; 31(3):389.e1-389.e8. PubMed ID: 27777057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.