BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32760723)

  • 1. Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae.
    Kunz TC; Götz R; Gao S; Sauer M; Kozjak-Pavlovic V
    Front Cell Dev Biol; 2020; 8():617. PubMed ID: 32760723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.
    Plecitá-Hlavatá L; Engstová H; Alán L; Špaček T; Dlasková A; Smolková K; Špačková J; Tauber J; Strádalová V; Malínský J; Lessard M; Bewersdorf J; Ježek P
    FASEB J; 2016 May; 30(5):1941-57. PubMed ID: 26887443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Live Cell STED Imaging to Visualize Mitochondrial Inner Membrane Ultrastructure in Neuronal Cell Models.
    Ng EL; Reed AL; O'Connell CB; Alder NN
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37458423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution.
    Wilkens V; Kohl W; Busch K
    J Cell Sci; 2013 Jan; 126(Pt 1):103-16. PubMed ID: 23038773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cristae shaping and dynamics in mitochondrial function.
    Caron C; Bertolin G
    J Cell Sci; 2024 Jan; 137(1):. PubMed ID: 38197774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae.
    Wang C; Taki M; Sato Y; Tamura Y; Yaginuma H; Okada Y; Yamaguchi S
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15817-15822. PubMed ID: 31337683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load.
    Dlasková A; Špaček T; Engstová H; Špačková J; Schröfel A; Holendová B; Smolková K; Plecitá-Hlavatá L; Ježek P
    Biochim Biophys Acta Bioenerg; 2019 Aug; 1860(8):659-678. PubMed ID: 31247171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live-cell STED nanoscopy of mitochondrial cristae.
    Stephan T; Roesch A; Riedel D; Jakobs S
    Sci Rep; 2019 Aug; 9(1):12419. PubMed ID: 31455826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution.
    Dlasková A; Engstová H; Špaček T; Kahancová A; Pavluch V; Smolková K; Špačková J; Bartoš M; Hlavatá LP; Ježek P
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):829-844. PubMed ID: 29727614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inner membrane dynamics in mitochondria.
    Dikov D; Bereiter-Hahn J
    J Struct Biol; 2013 Sep; 183(3):455-466. PubMed ID: 23792165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications.
    Perkins GA; Ellisman MH; Fox DA
    Mol Vis; 2003 Mar; 9():60-73. PubMed ID: 12632036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Expansion Microscopy to Physically Enlarge Whole-Mount Drosophila Embryos for Super-Resolution Imaging.
    Parveen S; Jones NW; Millerschultz I; Paré AC
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37184263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial inner membrane protein mitofilin controls cristae morphology.
    John GB; Shang Y; Li L; Renken C; Mannella CA; Selker JM; Rangell L; Bennett MJ; Zha J
    Mol Biol Cell; 2005 Mar; 16(3):1543-54. PubMed ID: 15647377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion Microscopy for Cell Biology Analysis in Fungi.
    Götz R; Panzer S; Trinks N; Eilts J; Wagener J; Turrà D; Di Pietro A; Sauer M; Terpitz U
    Front Microbiol; 2020; 11():574. PubMed ID: 32318047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains.
    Zerbes RM; Bohnert M; Stroud DA; von der Malsburg K; Kram A; Oeljeklaus S; Warscheid B; Becker T; Wiedemann N; Veenhuis M; van der Klei IJ; Pfanner N; van der Laan M
    J Mol Biol; 2012 Sep; 422(2):183-91. PubMed ID: 22575891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial Proteolipid Complexes of Creatine Kinase.
    Schlattner U; Kay L; Tokarska-Schlattner M
    Subcell Biochem; 2018; 87():365-408. PubMed ID: 29464567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion STED microscopy (ExSTED).
    Gao M; Thielhorn R; Rentsch J; Honigmann A; Ewers H
    Methods Cell Biol; 2021; 161():15-31. PubMed ID: 33478688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly.
    Kozjak-Pavlovic V; Prell F; Thiede B; Götz M; Wosiek D; Ott C; Rudel T
    J Mol Biol; 2014 Feb; 426(4):908-20. PubMed ID: 24333015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy.
    Götz R; Kunz TC; Fink J; Solger F; Schlegel J; Seibel J; Kozjak-Pavlovic V; Rudel T; Sauer M
    Nat Commun; 2020 Dec; 11(1):6173. PubMed ID: 33268771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.