BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32760723)

  • 21. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model.
    Cheniour M; Brewer J; Bagatolli L; Marcillat O; Granjon T
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt A):969-976. PubMed ID: 28185927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implications of mitochondrial membrane potential gradients on signaling and ATP production analyzed by correlative multi-parameter microscopy.
    Gottschalk B; Koshenov Z; Malli R; Graier WF
    Sci Rep; 2024 Jun; 14(1):14784. PubMed ID: 38926476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cristae formation-linking ultrastructure and function of mitochondria.
    Zick M; Rabl R; Reichert AS
    Biochim Biophys Acta; 2009 Jan; 1793(1):5-19. PubMed ID: 18620004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling.
    Plecitá-Hlavatá L; Ježek P
    Int J Biochem Cell Biol; 2016 Nov; 80():31-50. PubMed ID: 27640755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe.
    Ren W; Ge X; Li M; Sun J; Li S; Gao S; Shan C; Gao B; Xi P
    Light Sci Appl; 2024 May; 13(1):116. PubMed ID: 38782912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical instability generated by Myosin 19 contributes to mitochondria cristae architecture and OXPHOS.
    Shi P; Ren X; Meng J; Kang C; Wu Y; Rong Y; Zhao S; Jiang Z; Liang L; He W; Yin Y; Li X; Liu Y; Huang X; Sun Y; Li B; Wu C
    Nat Commun; 2022 May; 13(1):2673. PubMed ID: 35562374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ATP synthase is involved in generating mitochondrial cristae morphology.
    Paumard P; Vaillier J; Coulary B; Schaeffer J; Soubannier V; Mueller DM; Brèthes D; di Rago JP; Velours J
    EMBO J; 2002 Feb; 21(3):221-30. PubMed ID: 11823415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic.
    Teixeira P; Galland R; Chevrollier A
    Semin Cell Dev Biol; 2024; 159-160():38-51. PubMed ID: 38310707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expansion Microscopy with Multifunctional Polymer Dots.
    Liu J; Fang X; Liu Z; Li R; Yang Y; Sun Y; Zhao Z; Wu C
    Adv Mater; 2021 Jun; 33(25):e2007854. PubMed ID: 33988880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Who and how in the regulation of mitochondrial cristae shape and function.
    Quintana-Cabrera R; Mehrotra A; Rigoni G; Soriano ME
    Biochem Biophys Res Commun; 2018 May; 500(1):94-101. PubMed ID: 28438601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy.
    Louvel V; Haase R; Mercey O; Laporte MH; Eloy T; Baudrier É; Fortun D; Soldati-Favre D; Hamel V; Guichard P
    Nat Commun; 2023 Nov; 14(1):7893. PubMed ID: 38036510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes.
    Wang Y; Yu Z; Cahoon CK; Parmely T; Thomas N; Unruh JR; Slaughter BD; Hawley RS
    Nat Protoc; 2018 Aug; 13(8):1869-1895. PubMed ID: 30072723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of proton pumping on the structural rigidity of cristae in mitochondria.
    Yoneda M; Aklima J; Ohsawa I; Ohta Y
    Arch Biochem Biophys; 2022 May; 720():109172. PubMed ID: 35276212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative dSTORM super-resolution microscopy localizes Aurora kinase A/AURKA in the mitochondrial matrix.
    Durel B; Kervrann C; Bertolin G
    Biol Cell; 2021 Nov; 113(11):458-473. PubMed ID: 34463964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence Lifetime Super-Resolution Imaging Unveil the Dynamic Relationship between Mitochondrial Membrane Potential and Cristae Structure Using the Förster Resonance Energy Transfer Strategy.
    Peng F; Ai X; Sun J; Ge X; Li M; Xi P; Gao B
    Anal Chem; 2024 Jun; ():. PubMed ID: 38924514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of mitochondrial membranes under photo-oxidative stress with high spatiotemporal resolution.
    Loriette V; Fragola A; Kruglik SG; Sridhar S; Hubert A; Orieux F; Sepulveda E; Sureau F; Bonneau S
    Front Cell Dev Biol; 2023; 11():1307502. PubMed ID: 38046667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Method for live-cell super-resolution imaging of mitochondrial cristae and quantification of submitochondrial membrane potentials.
    Wolf DM; Segawa M; Shirihai OS; Liesa M
    Methods Cell Biol; 2020; 155():545-555. PubMed ID: 32183976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial cristae revealed with focused light.
    Schmidt R; Wurm CA; Punge A; Egner A; Jakobs S; Hell SW
    Nano Lett; 2009 Jun; 9(6):2508-10. PubMed ID: 19459703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial structure in steroid-producing cells: three-dimensional reconstruction of human Leydig cell mitochondria by electron microscopic tomography.
    Prince FP; Buttle KF
    Anat Rec A Discov Mol Cell Evol Biol; 2004 May; 278(1):454-61. PubMed ID: 15103741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology.
    Tarasenko D; Barbot M; Jans DC; Kroppen B; Sadowski B; Heim G; Möbius W; Jakobs S; Meinecke M
    J Cell Biol; 2017 Apr; 216(4):889-899. PubMed ID: 28254827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.