BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32760942)

  • 1. One-pot chemoenzymatic synthesis of glycopolymers from unprotected sugars via glycosidase-catalysed glycosylation using triazinyl glycosides.
    Tanaka T; Matsuura A; Aso Y; Ohara H
    Chem Commun (Camb); 2020 Sep; 56(71):10321-10324. PubMed ID: 32760942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous One-pot Synthesis of Glycopolymers by Glycosidase-catalyzed Glycomonomer Synthesis Using 4,6-Dimetoxy Triazinyl Glycoside Followed by Radical Polymerization.
    Tanaka T; Matsuura A; Aso Y; Ohara H
    J Appl Glycosci (1999); 2020; 67(4):119-127. PubMed ID: 34354538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective protecting-group-free synthesis of alkyl glycosides using dibenzyloxy triazine type glycosyl donors.
    Li G; Noguchi M; Ishihara M; Takagi Y; Nagaki M; Saito S; Saito M; Ye XS; Shoda SI
    Carbohydr Res; 2023 Dec; 534():108940. PubMed ID: 37738819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel dialkoxytriazine-type glycosyl donors for cellulase-catalysed lactosylation.
    Tanaka T; Noguchi M; Watanabe K; Misawa T; Ishihara M; Kobayashi A; Shoda S
    Org Biomol Chem; 2010 Nov; 8(22):5126-32. PubMed ID: 20835455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel glycosyl donor for chemo-enzymatic oligosaccharide synthesis: 4,6-dimethoxy-1,3,5-triazin-2-yl glycoside.
    Tanaka T; Noguchi M; Kobayashi A; Shoda S
    Chem Commun (Camb); 2008 May; (17):2016-8. PubMed ID: 18536806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of azido-deoxy and amino-deoxy glycosides and glycosyl fluorides for screening of glycosidase libraries and assembly of substituted glycosides.
    Chen HM; Withers SG
    Carbohydr Res; 2018 Sep; 467():33-44. PubMed ID: 30075363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of glycosides in which the aglycon is an N-(hydroxymethyl)amino-1,3,5-triazine derivative.
    Bagga K; Dua G; Williams G; Simmonds RJ
    Glycoconj J; 1997 Jun; 14(4):519-21. PubMed ID: 9249153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable stereoselectivity in the synthesis of α- and β-aryl glycosides using 1,2-α-anhydrosugars as glycosyl donors.
    Somasundaram D; Balasubramanian KK; Bhagavathy S
    Carbohydr Res; 2017 Sep; 449():95-102. PubMed ID: 28759815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Glycosides by Glycosynthases.
    Hayes MR; Pietruszka J
    Molecules; 2017 Aug; 22(9):. PubMed ID: 28867807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile stereocontrolled synthesis of 2-deoxyiminosugar C-glycosides and their evaluation as glycosidase inhibitors.
    Lumbroso A; Berthonneau C; Beaudet I; Quintard JP; Planchat A; García-Moreno MI; Ortiz Mellet C; Le Grognec E
    Org Biomol Chem; 2021 Feb; 19(5):1083-1099. PubMed ID: 33427829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalization of glycals leading to 2-deoxy-O-glycosides, aminosugars, nitrosugars and glycosidase inhibitors: our experience.
    Lahiri R; Dharuman S; Vankar YD
    Chimia (Aarau); 2012; 66(12):905-12. PubMed ID: 23394274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unprecedented Affinity Labeling of Carbohydrate-Binding Proteins with
    Masselin A; Petrelli A; Donzel M; Armand S; Cottaz S; Fort S
    Bioconjug Chem; 2019 Sep; 30(9):2332-2339. PubMed ID: 31403275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-catalyzed synthesis of heptyl-β-glycosides: effect of water coalescence at high temperature.
    Montiel C; Bustos-Jaimes I; Bárzana E
    Bioresour Technol; 2013 Sep; 144():135-40. PubMed ID: 23863873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods.
    Yu B; Sun J; Yang X
    Acc Chem Res; 2012 Aug; 45(8):1227-36. PubMed ID: 22493991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry.
    Kotik M; Kulik N; Valentová K
    J Agric Food Chem; 2023 Oct; 71(41):14890-14910. PubMed ID: 37800688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of O- and C-glycosides derived from β-(1,3)-D-glucans.
    Marca E; Valero-Gonzalez J; Delso I; Tejero T; Hurtado-Guerrero R; Merino P
    Carbohydr Res; 2013 Dec; 382():9-18. PubMed ID: 24140893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic assembly of α-O-linked-type GlcNAc using polymer chemistry affords sugar clusters, which effectively bind to lectins.
    Nakada J; Matsushita T; Koyama T; Hatano K; Matsuoka K
    Bioorg Med Chem Lett; 2024 Feb; 99():129616. PubMed ID: 38216097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, oxygen radical absorbance capacity, and tyrosinase inhibitory activity of glycosides of resveratrol, pterostilbene, and pinostilbene.
    Uesugi D; Hamada H; Shimoda K; Kubota N; Ozaki SI; Nagatani N
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):226-230. PubMed ID: 27756183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Di-N-acetyllegionaminic Acid-Containing Glycosides.
    Santra A; Xiao A; Yu H; Li W; Li Y; Ngo L; McArthur JB; Chen X
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2929-2933. PubMed ID: 29349857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Janus glycosides of next generation: Synthesis of 4-(3-chloropropoxy)phenyl and 4-(3-azidopropoxy)phenyl glycosides.
    Stepanova EV; Abronina PI; Zinin AI; Chizhov AO; Kononov LO
    Carbohydr Res; 2019 Jan; 471():95-104. PubMed ID: 30508661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.