These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32760942)
1. One-pot chemoenzymatic synthesis of glycopolymers from unprotected sugars via glycosidase-catalysed glycosylation using triazinyl glycosides. Tanaka T; Matsuura A; Aso Y; Ohara H Chem Commun (Camb); 2020 Sep; 56(71):10321-10324. PubMed ID: 32760942 [TBL] [Abstract][Full Text] [Related]
2. Aqueous One-pot Synthesis of Glycopolymers by Glycosidase-catalyzed Glycomonomer Synthesis Using 4,6-Dimetoxy Triazinyl Glycoside Followed by Radical Polymerization. Tanaka T; Matsuura A; Aso Y; Ohara H J Appl Glycosci (1999); 2020; 67(4):119-127. PubMed ID: 34354538 [TBL] [Abstract][Full Text] [Related]
3. Stereoselective protecting-group-free synthesis of alkyl glycosides using dibenzyloxy triazine type glycosyl donors. Li G; Noguchi M; Ishihara M; Takagi Y; Nagaki M; Saito S; Saito M; Ye XS; Shoda SI Carbohydr Res; 2023 Dec; 534():108940. PubMed ID: 37738819 [TBL] [Abstract][Full Text] [Related]
4. Novel dialkoxytriazine-type glycosyl donors for cellulase-catalysed lactosylation. Tanaka T; Noguchi M; Watanabe K; Misawa T; Ishihara M; Kobayashi A; Shoda S Org Biomol Chem; 2010 Nov; 8(22):5126-32. PubMed ID: 20835455 [TBL] [Abstract][Full Text] [Related]
5. A novel glycosyl donor for chemo-enzymatic oligosaccharide synthesis: 4,6-dimethoxy-1,3,5-triazin-2-yl glycoside. Tanaka T; Noguchi M; Kobayashi A; Shoda S Chem Commun (Camb); 2008 May; (17):2016-8. PubMed ID: 18536806 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of azido-deoxy and amino-deoxy glycosides and glycosyl fluorides for screening of glycosidase libraries and assembly of substituted glycosides. Chen HM; Withers SG Carbohydr Res; 2018 Sep; 467():33-44. PubMed ID: 30075363 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of glycosides in which the aglycon is an N-(hydroxymethyl)amino-1,3,5-triazine derivative. Bagga K; Dua G; Williams G; Simmonds RJ Glycoconj J; 1997 Jun; 14(4):519-21. PubMed ID: 9249153 [TBL] [Abstract][Full Text] [Related]
8. Tunable stereoselectivity in the synthesis of α- and β-aryl glycosides using 1,2-α-anhydrosugars as glycosyl donors. Somasundaram D; Balasubramanian KK; Bhagavathy S Carbohydr Res; 2017 Sep; 449():95-102. PubMed ID: 28759815 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Glycosides by Glycosynthases. Hayes MR; Pietruszka J Molecules; 2017 Aug; 22(9):. PubMed ID: 28867807 [TBL] [Abstract][Full Text] [Related]
10. A versatile stereocontrolled synthesis of 2-deoxyiminosugar C-glycosides and their evaluation as glycosidase inhibitors. Lumbroso A; Berthonneau C; Beaudet I; Quintard JP; Planchat A; García-Moreno MI; Ortiz Mellet C; Le Grognec E Org Biomol Chem; 2021 Feb; 19(5):1083-1099. PubMed ID: 33427829 [TBL] [Abstract][Full Text] [Related]
11. Functionalization of glycals leading to 2-deoxy-O-glycosides, aminosugars, nitrosugars and glycosidase inhibitors: our experience. Lahiri R; Dharuman S; Vankar YD Chimia (Aarau); 2012; 66(12):905-12. PubMed ID: 23394274 [TBL] [Abstract][Full Text] [Related]
12. Unprecedented Affinity Labeling of Carbohydrate-Binding Proteins with Masselin A; Petrelli A; Donzel M; Armand S; Cottaz S; Fort S Bioconjug Chem; 2019 Sep; 30(9):2332-2339. PubMed ID: 31403275 [TBL] [Abstract][Full Text] [Related]
13. Enzyme-catalyzed synthesis of heptyl-β-glycosides: effect of water coalescence at high temperature. Montiel C; Bustos-Jaimes I; Bárzana E Bioresour Technol; 2013 Sep; 144():135-40. PubMed ID: 23863873 [TBL] [Abstract][Full Text] [Related]
14. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. Yu B; Sun J; Yang X Acc Chem Res; 2012 Aug; 45(8):1227-36. PubMed ID: 22493991 [TBL] [Abstract][Full Text] [Related]
15. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry. Kotik M; Kulik N; Valentová K J Agric Food Chem; 2023 Oct; 71(41):14890-14910. PubMed ID: 37800688 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of O- and C-glycosides derived from β-(1,3)-D-glucans. Marca E; Valero-Gonzalez J; Delso I; Tejero T; Hurtado-Guerrero R; Merino P Carbohydr Res; 2013 Dec; 382():9-18. PubMed ID: 24140893 [TBL] [Abstract][Full Text] [Related]
17. Synthetic assembly of α-O-linked-type GlcNAc using polymer chemistry affords sugar clusters, which effectively bind to lectins. Nakada J; Matsushita T; Koyama T; Hatano K; Matsuoka K Bioorg Med Chem Lett; 2024 Feb; 99():129616. PubMed ID: 38216097 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, oxygen radical absorbance capacity, and tyrosinase inhibitory activity of glycosides of resveratrol, pterostilbene, and pinostilbene. Uesugi D; Hamada H; Shimoda K; Kubota N; Ozaki SI; Nagatani N Biosci Biotechnol Biochem; 2017 Feb; 81(2):226-230. PubMed ID: 27756183 [TBL] [Abstract][Full Text] [Related]
19. A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Di-N-acetyllegionaminic Acid-Containing Glycosides. Santra A; Xiao A; Yu H; Li W; Li Y; Ngo L; McArthur JB; Chen X Angew Chem Int Ed Engl; 2018 Mar; 57(11):2929-2933. PubMed ID: 29349857 [TBL] [Abstract][Full Text] [Related]
20. Janus glycosides of next generation: Synthesis of 4-(3-chloropropoxy)phenyl and 4-(3-azidopropoxy)phenyl glycosides. Stepanova EV; Abronina PI; Zinin AI; Chizhov AO; Kononov LO Carbohydr Res; 2019 Jan; 471():95-104. PubMed ID: 30508661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]