These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32760957)

  • 21. Polymer-based thermoresponsive hydrogels for controlled drug delivery.
    Lacroce E; Rossi F
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1203-1215. PubMed ID: 35575265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smart Hydrogels - Synthetic Stimuli-Responsive Antitumor Drug Release Systems.
    Kasiński A; Zielińska-Pisklak M; Oledzka E; Sobczak M
    Int J Nanomedicine; 2020; 15():4541-4572. PubMed ID: 32617004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent patents on stimuli responsive hydrogel drug delivery system.
    Patel GC; Dalwadi CA
    Recent Pat Drug Deliv Formul; 2013 Dec; 7(3):206-15. PubMed ID: 24237032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery.
    Wang Q; Zuo Z; Cheung CKC; Leung SSY
    Int J Pharm; 2019 Mar; 559():86-101. PubMed ID: 30677480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in ocular drug delivery.
    Achouri D; Alhanout K; Piccerelle P; Andrieu V
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1599-617. PubMed ID: 23153114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulus-responsive "smart" hydrogels as novel drug delivery systems.
    Soppimath KS; Aminabhavi TM; Dave AM; Kumbar SG; Rudzinski WE
    Drug Dev Ind Pharm; 2002 Sep; 28(8):957-74. PubMed ID: 12378965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.
    Alexander A; Ajazuddin ; Khan J; Saraf S; Saraf S
    Eur J Pharm Biopharm; 2014 Nov; 88(3):575-85. PubMed ID: 25092423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept.
    Patel N; Thakkar V; Metalia V; Baldaniya L; Gandhi T; Gohel M
    Drug Dev Ind Pharm; 2016 Sep; 42(9):1406-23. PubMed ID: 26716613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogels in controlled release formulations: network design and mathematical modeling.
    Lin CC; Metters AT
    Adv Drug Deliv Rev; 2006 Nov; 58(12-13):1379-408. PubMed ID: 17081649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium.
    Luo Z; Jin L; Xu L; Zhang ZL; Yu J; Shi S; Li X; Chen H
    Drug Deliv; 2016; 23(1):63-8. PubMed ID: 24758189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Development of Thermoreversible Ophthalmic In Situ Hydrogel of Moxifloxacin HCl.
    Shastri DH; Prajapati ST; Patel LD
    Curr Drug Deliv; 2010 Jul; 7(3):238-43. PubMed ID: 20497100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ gelling and mucoadhesive polymers: why do they need each other?
    Zahir-Jouzdani F; Wolf JD; Atyabi F; Bernkop-Schnürch A
    Expert Opin Drug Deliv; 2018 Oct; 15(10):1007-1019. PubMed ID: 30173567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermosensitive In Situ Gels for Joint Disorders: Pharmaceutical Considerations in Intra-Articular Delivery.
    Koland M; Narayanan Vadakkepushpakath A; John A; Tharamelveliyil Rajendran A; Raghunath I
    Gels; 2022 Nov; 8(11):. PubMed ID: 36354630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Throughput Synthesis, Analysis, and Optimization of Injectable Hydrogels for Protein Delivery.
    Xu F; Corbett B; Bell S; Zhang C; Budi Hartono M; Farsangi ZJ; MacGregor J; Hoare T
    Biomacromolecules; 2020 Jan; 21(1):214-229. PubMed ID: 31686502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymes and biopolymers. The opportunity for the smart design of molecular delivery systems.
    Rivero Berti I; Islan GA; Castro GR
    Bioresour Technol; 2021 Feb; 322():124546. PubMed ID: 33360273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brimonidine Imprinted Hydrogels and Evaluation of Their Binding and Releasing Properties as New Ocular Drug Delivery Systems.
    Omranipour HM; Sajadi Tabassi SA; Kowsari R; Rad MS; Mohajeri SA
    Curr Drug Deliv; 2015; 12(6):717-25. PubMed ID: 25772151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Harmonious Biomaterials for Development of In situ Approaches for Locoregional Delivery of Anti-cancer Drugs: Current Trends.
    Singh A; Thakur S; Sharma T; Kaur M; Sahajpal NS; Aurora R; Jain SK
    Curr Med Chem; 2020; 27(21):3463-3498. PubMed ID: 31223077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrically responsive smart hydrogels in drug delivery: a review.
    Kulkarni RV; Biswanath S
    J Appl Biomater Biomech; 2007; 5(3):125-39. PubMed ID: 20799182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carrageenan: A Wonder Polymer from Marine Algae for Potential Drug Delivery Applications.
    Qureshi D; Nayak SK; Maji S; Kim D; Banerjee I; Pal K
    Curr Pharm Des; 2019; 25(11):1172-1186. PubMed ID: 31465278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in hydrogel based drug delivery systems for the human body.
    Vashist A; Vashist A; Gupta YK; Ahmad S
    J Mater Chem B; 2014 Jan; 2(2):147-166. PubMed ID: 32261602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.