These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32761275)

  • 1. MdHAL3, a 4'-phosphopantothenoylcysteine decarboxylase, is involved in the salt tolerance of autotetraploid apple.
    Yang S; Zhang F; Wang Y; Xue H; Jiang Q; Shi J; Dai H; Zhang Z; Li L; He P; Li Y; Ma Y
    Plant Cell Rep; 2020 Nov; 39(11):1479-1491. PubMed ID: 32761275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cytochrome P450 gene, MdCYP716B1, is involved in regulating plant growth and anthracnose resistance in apple.
    Shi J; Zhang F; Wang Y; Zhang S; Wang F; Ma Y
    Plant Sci; 2023 Oct; 335():111832. PubMed ID: 37586420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings.
    Dong Q; Zheng W; Duan D; Huang D; Wang Q; Liu C; Li C; Gong X; Li C; Mao K; Ma F
    Plant Sci; 2020 Oct; 299():110611. PubMed ID: 32900448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes.
    Sharma V; Goel P; Kumar S; Singh AK
    Plant Cell Rep; 2019 Feb; 38(2):221-241. PubMed ID: 30511183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ankyrin repeat-containing protein MdANK2B regulates salt tolerance and ABA sensitivity in Malus domestica.
    Zhang FJ; Xie YH; Jiang H; Wang X; Hao YJ; Zhang Z; You CX
    Plant Cell Rep; 2021 Feb; 40(2):405-419. PubMed ID: 33331953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis.
    Li C; Wei Z; Liang D; Zhou S; Li Y; Liu C; Ma F
    Plant Physiol Biochem; 2013 Sep; 70():164-73. PubMed ID: 23774378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants.
    Wang QJ; Sun H; Dong QL; Sun TY; Jin ZX; Hao YJ; Yao YX
    Plant Biotechnol J; 2016 Oct; 14(10):1986-97. PubMed ID: 26923485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcription factor MdERF023 negatively regulates salt tolerance by modulating ABA signaling and Na
    Chen C; Zhang Z; Lei Y; Chen W; Zhang Z; Dai H
    Plant Cell Rep; 2024 Jul; 43(7):187. PubMed ID: 38958739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased autophagic activity in roots caused by overexpression of the autophagy-related gene MdATG10 in apple enhances salt tolerance.
    Huo L; Guo Z; Jia X; Sun X; Wang P; Gong X; Ma F
    Plant Sci; 2020 May; 294():110444. PubMed ID: 32234232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exogenous application of xanthine and uric acid and nucleobase-ascorbate transporter MdNAT7 expression regulate salinity tolerance in apple.
    Sun T; Pei T; Yang L; Zhang Z; Li M; Liu Y; Ma F; Liu C
    BMC Plant Biol; 2021 Jan; 21(1):52. PubMed ID: 33468049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of MdMIPS1 enhances salt tolerance by improving osmosis, ion balance, and antioxidant activity in transgenic apple.
    Hu L; Zhou K; Liu Y; Yang S; Zhang J; Gong X; Ma F
    Plant Sci; 2020 Dec; 301():110654. PubMed ID: 33218625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Analysis of the Apple CBL Family Reveals That Mdcbl10.1 Functions Positively in Modulating Apple Salt Tolerance.
    Chen P; Yang J; Mei Q; Liu H; Cheng Y; Ma F; Mao K
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin enhances KCl salinity tolerance by maintaining K
    Sun Z; Li J; Guo D; Wang T; Tian Y; Ma C; Liu X; Wang C; Zheng X
    Plant Biotechnol J; 2023 Nov; 21(11):2273-2290. PubMed ID: 37465981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription.
    An JP; Zhang XW; Xu RR; You CX; Wang XF; Hao YJ
    Plant Sci; 2018 Nov; 276():181-188. PubMed ID: 30348317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MdINT1 enhances apple salinity tolerance by regulating the antioxidant system, homeostasis of ions, and osmosis.
    Hu L; Zhou K; Yang S; Liu Y; Li Y; Zhang Z; Zhang J; Gong X; Ma F
    Plant Physiol Biochem; 2020 Sep; 154():689-698. PubMed ID: 32750646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis.
    Hu DG; Li M; Luo H; Dong QL; Yao YX; You CX; Hao YJ
    Plant Cell Rep; 2012 Apr; 31(4):713-22. PubMed ID: 22108717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The HD-Zip I transcription factor MdHB7-like confers tolerance to salinity in transgenic apple (Malus domestica).
    Zhao S; Wang H; Jia X; Gao H; Mao K; Ma F
    Physiol Plant; 2021 Jul; 172(3):1452-1464. PubMed ID: 33432639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An apple (Malus domestica) NAC transcription factor enhances drought tolerance in transgenic apple plants.
    Jia D; Jiang Q; van Nocker S; Gong X; Ma F
    Plant Physiol Biochem; 2019 Jun; 139():504-512. PubMed ID: 31015089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression Analysis of AUX/IAA Family Genes in Apple Under Salt Stress.
    Li Y; Wang L; Yu B; Guo J; Zhao Y; Zhu Y
    Biochem Genet; 2022 Aug; 60(4):1205-1221. PubMed ID: 34802110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves.
    Wu T; Wang Y; Zheng Y; Fei Z; Dandekar AM; Xu K; Han Z; Cheng L
    Plant Cell Physiol; 2015 Sep; 56(9):1748-61. PubMed ID: 26076968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.