These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32761312)

  • 1. Proactive engagement of cognitive control modulates implicit approach-avoidance bias.
    Harlé KM; Bomyea J; Spadoni AD; Simmons AN; Taylor CT
    Cogn Affect Behav Neurosci; 2020 Oct; 20(5):998-1010. PubMed ID: 32761312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal patterns of cognitive control revealed with simultaneous electroencephalography and functional magnetic resonance imaging.
    Hinault T; Larcher K; Zazubovits N; Gotman J; Dagher A
    Hum Brain Mapp; 2019 Jan; 40(1):80-97. PubMed ID: 30259592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of stimulus valence on perceptual processing of facial expressions and subsequent response inhibition.
    Stockdale LA; Morrison RG; Silton RL
    Psychophysiology; 2020 Feb; 57(2):e13467. PubMed ID: 31454096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ACC and IPL networks in the perception of the faces of parents during selective tasks.
    Zhai H; Yu Y; Zhang W; Chen G; Jia F
    Brain Imaging Behav; 2016 Dec; 10(4):1172-1183. PubMed ID: 26613720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct neural processes are engaged in the modulation of mimicry by social group-membership and emotional expressions.
    Rauchbauer B; Majdandžić J; Hummer A; Windischberger C; Lamm C
    Cortex; 2015 Sep; 70():49-67. PubMed ID: 25929599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the neural basis of cognitive control: An event-related fMRI study of task selection processes.
    Abou-Ghazaleh A; Khateb A; Kroll JF
    Int J Psychophysiol; 2020 Jul; 153():80-90. PubMed ID: 32360750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks.
    Messel MS; Raud L; Hoff PK; Skaftnes CS; Huster RJ
    Neuropsychologia; 2019 Dec; 135():107220. PubMed ID: 31586553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal unpredictability of a stimulus sequence and the processing of neutral and emotional stimuli.
    Koppe G; Heidel A; Sammer G; Bohus M; Gallhofer B; Kirsch P; Lis S
    Neuroimage; 2015 Oct; 120():214-24. PubMed ID: 26143208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociating the neural substrates for inhibition and shifting in domain-general cognitive control.
    Sun X; Li L; Mo C; Mo L; Wang R; Ding G
    Eur J Neurosci; 2019 Jul; 50(2):1920-1931. PubMed ID: 30706976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial.
    Taren AA; Gianaros PJ; Greco CM; Lindsay EK; Fairgrieve A; Brown KW; Rosen RK; Ferris JL; Julson E; Marsland AL; Creswell JD
    Psychosom Med; 2017; 79(6):674-683. PubMed ID: 28323668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERPs dissociate proactive and reactive control: evidence from a task-switching paradigm with informative and uninformative cues.
    Czernochowski D
    Cogn Affect Behav Neurosci; 2015 Mar; 15(1):117-31. PubMed ID: 24925001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition in the face of emotion: Characterization of the spatial-temporal dynamics that facilitate automatic emotion regulation.
    Taylor MJ; Robertson A; Keller AE; Sato J; Urbain C; Pang EW
    Hum Brain Mapp; 2018 Jul; 39(7):2907-2916. PubMed ID: 29573366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence.
    Banich MT; Smolker HR; Snyder HR; Lewis-Peacock JA; Godinez DA; Wager TD; Hankin BL
    Neuropsychologia; 2019 Mar; 125():93-108. PubMed ID: 30615898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motivation by potential gains and losses affects control processes via different mechanisms in the attentional network.
    Paschke LM; Walter H; Steimke R; Ludwig VU; Gaschler R; Schubert T; Stelzel C
    Neuroimage; 2015 May; 111():549-61. PubMed ID: 25731995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive demand modulates connectivity patterns of rostral inferior parietal cortex in cognitive control of language.
    Tabassi Mofrad F; Schiller NO
    Cogn Neurosci; 2020; 11(4):181-193. PubMed ID: 31841066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulations of the executive control network by stimulus onset asynchrony in a Stroop task.
    Coderre EL; van Heuven WJ
    BMC Neurosci; 2013 Jul; 14():79. PubMed ID: 23902451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the neural control of social emotional behavior.
    Roelofs K; Minelli A; Mars RB; van Peer J; Toni I
    Soc Cogn Affect Neurosci; 2009 Mar; 4(1):50-8. PubMed ID: 19047074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition.
    Hazeltine E; Bunge SA; Scanlon MD; Gabrieli JD
    Neuropsychologia; 2003; 41(9):1208-17. PubMed ID: 12753960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.