BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32761498)

  • 1. Recognition and sensitive detection of CTCs using a controllable label-free electrochemical cytosensor.
    Zhang H; Liang F; Wu X; Liu Y; Chen A
    Mikrochim Acta; 2020 Aug; 187(9):487. PubMed ID: 32761498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable n-Fe
    Zhang H; Zhang B; Chen A; Qin Y
    Dalton Trans; 2017 Jun; 46(23):7434-7440. PubMed ID: 28548671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible capturing and voltammetric determination of circulating tumor cells using two-dimensional nanozyme based on PdMo decorated with gold nanoparticles and aptamer.
    Yang W; Fan L; Guo Z; Wu H; Chen J; Liu C; Yan Y; Ding S
    Mikrochim Acta; 2021 Sep; 188(10):319. PubMed ID: 34476628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs.
    Shen H; Yang J; Chen Z; Chen X; Wang L; Hu J; Ji F; Xie G; Feng W
    Biosens Bioelectron; 2016 Jul; 81():495-502. PubMed ID: 27016910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel cytosensor based on Pt@Ag nanoflowers and AuNPs/Acetylene black for ultrasensitive and highly specific detection of Circulating Tumor Cells.
    Tang S; Shen H; Hao Y; Huang Z; Tao Y; Peng Y; Guo Y; Xie G; Feng W
    Biosens Bioelectron; 2018 May; 104():72-78. PubMed ID: 29324284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A layered nanocomposite of laccase, chitosan, and Fe
    Fernandes PMV; Campiña JM; Silva AF
    Mikrochim Acta; 2020 Apr; 187(5):262. PubMed ID: 32270383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells.
    Cui F; Ji J; Sun J; Wang J; Wang H; Zhang Y; Ding H; Lu Y; Xu D; Sun X
    Anal Bioanal Chem; 2019 Feb; 411(5):985-995. PubMed ID: 30612176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time circulating tumor cells detection via highly sensitive needle-like cytosensor-demonstrated by a blood flow simulation.
    Weng WH; Ho IL; Pang CC; Pang SN; Pan TM; Leung WH
    Biosens Bioelectron; 2018 Sep; 116():51-59. PubMed ID: 29859397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination.
    Liu S; Xing X; Yu J; Lian W; Li J; Cui M; Huang J
    Biosens Bioelectron; 2012; 36(1):186-91. PubMed ID: 22560161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells.
    Wang K; He MQ; Zhai FH; He RH; Yu YL
    Talanta; 2017 May; 166():87-92. PubMed ID: 28213264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Plasmon-Enhanced Electrochemistry for Enabling Ultrasensitive and Label-Free Detection of Circulating Tumor Cells in Blood.
    Wang SS; Zhao XP; Liu FF; Younis MR; Xia XH; Wang C
    Anal Chem; 2019 Apr; 91(7):4413-4420. PubMed ID: 30816698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Cytosensor Based on a Gold Nanostar-Decorated Graphene Oxide Platform for Gastric Cancer Cell Detection.
    Zhang A; Liu Q; Huang Z; Zhang Q; Wang R; Cui D
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells.
    Sun D; Lu J; Chen Z; Yu Y; Mo M
    Anal Chim Acta; 2015 Jul; 885():166-73. PubMed ID: 26231902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical cytosensor utilizing tetrahedral DNA/bimetallic AuPd holothurian-shaped nanoparticles for ultrasensitive non-destructive detection of circulating tumor cells.
    Guo H; Fu Y; Chen S; Wei Y; Xie L; Chen M
    Mikrochim Acta; 2024 May; 191(6):298. PubMed ID: 38709403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticle-modified black phosphorus nanosheets with improved stability for detection of circulating tumor cells.
    Liu S; Luo J; Jiang X; Li X; Yang M
    Mikrochim Acta; 2020 Jun; 187(7):397. PubMed ID: 32564257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A photoelectrochemical cytosensor based on a Bi
    Guo Y; Guo B; Liu Z; Li J; Gao L; Jiang H; Wang J
    Biomater Sci; 2024 Mar; 12(6):1529-1535. PubMed ID: 38298092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glypican-3 electrochemical aptamer nanobiosensor based on hemin/graphene nanohybrids peroxidase-like catalytic silver deposition.
    Zhou Z; Zhao L; Li W; Chen M; Feng H; Shi X; Liang J; Li G
    Mikrochim Acta; 2020 Apr; 187(5):305. PubMed ID: 32356075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micro-/nano-chip and quantum dots-based 3D cytosensor for quantitative analysis of circulating tumor cells.
    Wu X; Xiao T; Luo Z; He R; Cao Y; Guo Z; Zhang W; Chen Y
    J Nanobiotechnology; 2018 Sep; 16(1):65. PubMed ID: 30205821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual recognition strategy for accurate detection of CTCs based on novel branched PtAuRh trimetallic nanospheres.
    Cai J; Shen H; Wang Y; Peng Y; Tang S; Zhu Y; Liu Q; Li B; Xie G; Feng W
    Biosens Bioelectron; 2021 Mar; 176():112893. PubMed ID: 33342693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs).
    Safarpour H; Dehghani S; Nosrati R; Zebardast N; Alibolandi M; Mokhtarzadeh A; Ramezani M
    Biosens Bioelectron; 2020 Jan; 148():111833. PubMed ID: 31733465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.