These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 32761881)
61. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae). Zhang S; Zhang Z; Wang H; Kong X Insect Biochem Mol Biol; 2014 Sep; 52():69-81. PubMed ID: 24998398 [TBL] [Abstract][Full Text] [Related]
62. Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. Vogt RG; Rybczynski R; Lerner MR J Neurosci; 1991 Oct; 11(10):2972-84. PubMed ID: 1719155 [TBL] [Abstract][Full Text] [Related]
63. Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly, Bemisia tabaci. Zeng Y; Yang YT; Wu QJ; Wang SL; Xie W; Zhang YJ Insect Sci; 2019 Aug; 26(4):620-634. PubMed ID: 29441682 [TBL] [Abstract][Full Text] [Related]
64. Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura. Gu SH; Zhou JJ; Gao S; Wang DH; Li XC; Guo YY; Zhang YJ Sci Rep; 2015 Sep; 5():13800. PubMed ID: 26346731 [TBL] [Abstract][Full Text] [Related]
65. Mating-based regulation and ligand binding of an odorant-binding protein support the inverse sexual communication of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae). Lizana P; Machuca J; Larama G; Quiroz A; Mutis A; Venthur H Insect Mol Biol; 2020 Jun; 29(3):337-351. PubMed ID: 32065441 [TBL] [Abstract][Full Text] [Related]
66. Identification of novel odorant binding protein genes and functional characterization of OBP8 in Chilo suppressalis (Walker). Yang K; Liu Y; Niu DJ; Wei D; Li F; Wang GR; Dong SL Gene; 2016 Oct; 591(2):425-32. PubMed ID: 27374155 [TBL] [Abstract][Full Text] [Related]
67. Molecular characterization and differential expression of olfactory genes in the antennae of the black cutworm moth Agrotis ipsilon. Gu SH; Sun L; Yang RN; Wu KM; Guo YY; Li XC; Zhou JJ; Zhang YJ PLoS One; 2014; 9(8):e103420. PubMed ID: 25083706 [TBL] [Abstract][Full Text] [Related]
68. Analysis of the grapevine moth Lobesia botrana antennal transcriptome and expression of odorant-binding and chemosensory proteins. Rojas V; Jiménez H; Palma-Millanao R; González-González A; Machuca J; Godoy R; Ceballos R; Mutis A; Venthur H Comp Biochem Physiol Part D Genomics Proteomics; 2018 Sep; 27():1-12. PubMed ID: 29727827 [TBL] [Abstract][Full Text] [Related]
69. Comparative transcriptome analysis of venom glands from Cotesia vestalis and Diadromus collaris, two endoparasitoids of the host Plutella xylostella. Zhao W; Shi M; Ye XQ; Li F; Wang XW; Chen XX Sci Rep; 2017 May; 7(1):1298. PubMed ID: 28465546 [TBL] [Abstract][Full Text] [Related]
70. Parasitic castration of Plutella xylostella larvae induced by polydnaviruses and venom of Cotesia vestalis and Diadegma semiclausum. Bai SF; Cai DZ; Li X; Chen XX Arch Insect Biochem Physiol; 2009 Jan; 70(1):30-43. PubMed ID: 18949808 [TBL] [Abstract][Full Text] [Related]
71. Identification of odorant-binding protein genes in Galeruca daurica (Coleoptera: Chrysomelidae) and analysis of their expression profiles. Li L; Zhou YT; Tan Y; Zhou XR; Pang BP Bull Entomol Res; 2017 Aug; 107(4):550-561. PubMed ID: 28424098 [TBL] [Abstract][Full Text] [Related]
72. A teratocyte-specific serpin from the endoparasitoid wasp Cotesia vestalis inhibits the prophenoloxidase-activating system of its host Plutella xylostella. Gu Q; Wu Z; Zhou Y; Wang Z; Shi M; Huang J; Chen X Insect Mol Biol; 2022 Apr; 31(2):202-215. PubMed ID: 34897868 [TBL] [Abstract][Full Text] [Related]
73. Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua. Zhu JY; Zhang LF; Ze SZ; Wang DW; Yang B J Insect Physiol; 2013 Jul; 59(7):722-8. PubMed ID: 23499610 [TBL] [Abstract][Full Text] [Related]
74. Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. Li ZQ; Zhang S; Luo JY; Cui JJ; Ma Y; Dong SL J Insect Physiol; 2013 Mar; 59(3):263-72. PubMed ID: 23295622 [TBL] [Abstract][Full Text] [Related]
75. Characterization of two genes of Cotesia vestalis polydnavirus and their expression patterns in the host Plutella xylostella. Chen YF; Shi M; Huang F; Chen XX J Gen Virol; 2007 Dec; 88(Pt 12):3317-3322. PubMed ID: 18024901 [TBL] [Abstract][Full Text] [Related]
76. Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae. Wang Q; Liu JT; Zhang YJ; Chen JL; Li XC; Liang P; Gao XW; Zhou JJ; Gu SH Insect Biochem Mol Biol; 2021 Mar; 130():103528. PubMed ID: 33482303 [TBL] [Abstract][Full Text] [Related]
77. Molecular and Functional Characterization of Three Odorant-Binding Protein from Periplaneta americana. Li ZQ; He P; Zhang YN; Dong SL PLoS One; 2017; 12(1):e0170072. PubMed ID: 28081263 [TBL] [Abstract][Full Text] [Related]
78. Odorant-binding and chemosensory proteins identified in the antennal transcriptome of Adelphocoris suturalis Jakovlev. Cui HH; Gu SH; Zhu XQ; Wei Y; Liu HW; Khalid HD; Guo YY; Zhang YJ Comp Biochem Physiol Part D Genomics Proteomics; 2017 Dec; 24():139-145. PubMed ID: 27085212 [TBL] [Abstract][Full Text] [Related]
79. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Hekmat-Scafe DS; Scafe CR; McKinney AJ; Tanouye MA Genome Res; 2002 Sep; 12(9):1357-69. PubMed ID: 12213773 [TBL] [Abstract][Full Text] [Related]
80. Identification of odorant binding proteins in Carpomya vesuviana and their binding affinity to the male-borne semiochemicals and host plant volatiles. Li Y; Zhou P; Zhang J; Yang D; Li Z; Zhang X; Zhu S; Yu Y; Chen N J Insect Physiol; 2017 Jul; 100():100-107. PubMed ID: 28571710 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]