These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 32761899)
1. BRR-Net: A tandem architectural CNN-RNN for automatic body region localization in CT images. Agrawal V; Udupa J; Tong Y; Torigian D Med Phys; 2020 Oct; 47(10):5020-5031. PubMed ID: 32761899 [TBL] [Abstract][Full Text] [Related]
2. Body region localization in whole-body low-dose CT images of PET/CT scans using virtual landmarks. Bai P; Udupa JK; Tong Y; Xie S; Torigian DA Med Phys; 2019 Mar; 46(3):1286-1299. PubMed ID: 30609058 [TBL] [Abstract][Full Text] [Related]
3. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN. Xu X; Zhou F; Liu B Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905 [TBL] [Abstract][Full Text] [Related]
4. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases. Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357 [TBL] [Abstract][Full Text] [Related]
5. Automatic anatomy recognition in whole-body PET/CT images. Wang H; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA Med Phys; 2016 Jan; 43(1):613. PubMed ID: 26745953 [TBL] [Abstract][Full Text] [Related]
6. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
7. Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Udupa JK; Odhner D; Zhao L; Tong Y; Matsumoto MM; Ciesielski KC; Falcao AX; Vaideeswaran P; Ciesielski V; Saboury B; Mohammadianrasanani S; Sin S; Arens R; Torigian DA Med Image Anal; 2014 Jul; 18(5):752-71. PubMed ID: 24835182 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer. Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images. Netherton TJ; Rhee DJ; Cardenas CE; Chung C; Klopp AH; Peterson CB; Howell RM; Balter PA; Court LE Med Phys; 2020 Nov; 47(11):5592-5608. PubMed ID: 33459402 [TBL] [Abstract][Full Text] [Related]
10. Combining natural and artificial intelligence for robust automatic anatomy segmentation: Application in neck and thorax auto-contouring. Udupa JK; Liu T; Jin C; Zhao L; Odhner D; Tong Y; Agrawal V; Pednekar G; Nag S; Kotia T; Goodman M; Wileyto EP; Mihailidis D; Lukens JN; Berman AT; Stambaugh J; Lim T; Chowdary R; Jalluri D; Jabbour SK; Kim S; Reyhan M; Robinson CG; Thorstad WL; Choi JI; Press R; Simone CB; Camaratta J; Owens S; Torigian DA Med Phys; 2022 Nov; 49(11):7118-7149. PubMed ID: 35833287 [TBL] [Abstract][Full Text] [Related]
11. Deep learning-based body part recognition algorithm for three-dimensional medical images. Ouyang Z; Zhang P; Pan W; Li Q Med Phys; 2022 May; 49(5):3067-3079. PubMed ID: 35157332 [TBL] [Abstract][Full Text] [Related]
12. Automatic thoracic body region localization. Bai P; Udupa JK; Tong Y; Xie S; Torigian DA Proc SPIE Int Soc Opt Eng; 2017 Feb; 10134():. PubMed ID: 30158738 [TBL] [Abstract][Full Text] [Related]
14. Object recognition in medical images via anatomy-guided deep learning. Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745 [TBL] [Abstract][Full Text] [Related]
15. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network. Dinkla AM; Florkow MC; Maspero M; Savenije MHF; Zijlstra F; Doornaert PAH; van Stralen M; Philippens MEP; van den Berg CAT; Seevinck PR Med Phys; 2019 Sep; 46(9):4095-4104. PubMed ID: 31206701 [TBL] [Abstract][Full Text] [Related]
16. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Wang Y; Qiu Y; Thai T; Moore K; Liu H; Zheng B Comput Methods Programs Biomed; 2017 Jun; 144():97-104. PubMed ID: 28495009 [TBL] [Abstract][Full Text] [Related]
17. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
18. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography. Gong H; Ren L; Hsieh SS; McCollough CH; Yu L Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068 [TBL] [Abstract][Full Text] [Related]
19. Automatic segmentation of the pharyngeal airway space with convolutional neural network. Shujaat S; Jazil O; Willems H; Van Gerven A; Shaheen E; Politis C; Jacobs R J Dent; 2021 Aug; 111():103705. PubMed ID: 34077802 [TBL] [Abstract][Full Text] [Related]
20. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Hemke R; Buckless CG; Tsao A; Wang B; Torriani M Skeletal Radiol; 2020 Mar; 49(3):387-395. PubMed ID: 31396667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]