BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 32762047)

  • 21. Nitrogen and litter addition decreased sexual reproduction and increased clonal propagation in grasslands.
    Li Z; Wu J; Han Q; Nie K; Xie J; Li Y; Wang X; Du H; Wang D; Liu J
    Oecologia; 2021 Jan; 195(1):131-144. PubMed ID: 33491109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.
    Schuster MJ
    Oecologia; 2016 Mar; 180(3):645-55. PubMed ID: 26216200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland.
    Throop HL; Archer SR
    Ecol Appl; 2007 Sep; 17(6):1809-23. PubMed ID: 17913142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Warming and nitrogen addition increase litter decomposition in a temperate meadow ecosystem.
    Gong S; Guo R; Zhang T; Guo J
    PLoS One; 2015; 10(3):e0116013. PubMed ID: 25774776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of nitrogen and water addition on trace element stoichiometry in five grassland species.
    Cai J; Weiner J; Wang R; Luo W; Zhang Y; Liu H; Xu Z; Li H; Zhang Y; Jiang Y
    J Plant Res; 2017 Jul; 130(4):659-668. PubMed ID: 28299516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soil acidification alters root morphology, increases root biomass but reduces root decomposition in an alpine grassland.
    Wang P; Guo J; Xu X; Yan X; Zhang K; Qiu Y; Zhao Q; Huang K; Luo X; Yang F; Guo H; Hu S
    Environ Pollut; 2020 Oct; 265(Pt A):115016. PubMed ID: 32585396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixing effects of three Eurasian plants on root decomposition in the existence of living plant community in a meadow steppe.
    Naeem I; Asif T; Zhang T; Guan Y; Wu X; Tariq H; Wang D
    Sci Total Environ; 2022 Mar; 811():151400. PubMed ID: 34742802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term litter decomposition controlled by manganese redox cycling.
    Keiluweit M; Nico P; Harmon ME; Mao J; Pett-Ridge J; Kleber M
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5253-60. PubMed ID: 26372954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis.
    Cleveland CC; Reed SC; Keller AB; Nemergut DR; O'Neill SP; Ostertag R; Vitousek PM
    Oecologia; 2014 Jan; 174(1):283-94. PubMed ID: 24022257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes of Soil Microbiological Properties during Grass Litter Decomposition in Loess Hilly Region, China.
    Xiang Y; An S; Cheng M; Liu L; Xie Y
    Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30134580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhizosheaths stimulate short-term root decomposition in a semiarid grassland.
    Kong D; Wang J; Yang F; Shao P
    Sci Total Environ; 2018 Nov; 640-641():1297-1301. PubMed ID: 30021296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme kinetics inform about mechanistic changes in tea litter decomposition across gradients in land-use intensity in Central German grasslands.
    Meyer UN; Tischer A; Freitag M; Klaus VH; Kleinebecker T; Oelmann Y; Kandeler E; Hölzel N; Hamer U
    Sci Total Environ; 2022 Aug; 836():155748. PubMed ID: 35526633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of long-term fertilization and water addition on soil properties and plant community characteristics in a semiarid grassland.].
    Jiang Y; Xu ZW; Wang RZ; Li H; Zhang YG
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2470-2480. PubMed ID: 31418250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of fire frequency on oak litter decomposition and nitrogen dynamics.
    Hernández DL; Hobbie SE
    Oecologia; 2008 Dec; 158(3):535-43. PubMed ID: 18850116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest.
    Wang Q; Kwak JH; Choi WJ; Chang SX
    Environ Pollut; 2019 Jul; 250():143-154. PubMed ID: 30991283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects of changes in seasonal snow-cover on litter decomposition and soil nitrogen dynamics in forests.].
    Wu QQ; Wang CK
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2422-2432. PubMed ID: 30039682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of exogenous N and endogenous nutrients on alpine tundra litter decomposition in an area of high nitrogen deposition.
    Zhang Y; Jin Y; Xu J; He H; Tao Y; Yang Z; Bai Y
    Sci Total Environ; 2022 Jan; 805():150388. PubMed ID: 34818765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Response of nutrient release and ecological stoichiometry of litter to simulated nitrogen deposition in evergreen broad-leaved forest in central Yunnan, China].
    Zheng XR; Song YL; Wang KQ; Zhang YJ; Pan Y
    Ying Yong Sheng Tai Xue Bao; 2021 Jan; 32(1):23-30. PubMed ID: 33477209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2.
    Gill RA; Anderson LJ; Polley HW; Johnson HB; Jackson RB
    Ecology; 2006 Jan; 87(1):41-52. PubMed ID: 16634295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.