These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32762571)

  • 21. Quantification and comparison of the mechanical properties of four human cardiac valves.
    Pham T; Sulejmani F; Shin E; Wang D; Sun W
    Acta Biomater; 2017 May; 54():345-355. PubMed ID: 28336153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute Mitral Valve Dysfunction Due to Escape of Prosthetic Mechanical Leaflet and Peripheral Leaftlet Embolization.
    Calik ES; Limandal HK; Arslan U; Tort M; Yildiz Z; Bayram E; Dag O; Kaygin MA; Erkut B
    Heart Surg Forum; 2015 Dec; 18(6):E245-9. PubMed ID: 26726714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves.
    Burriesci G; Howard IC; Patterson EA
    J Med Eng Technol; 1999; 23(6):203-15. PubMed ID: 10738683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.
    Weinberg EJ; Kaazempur-Mofrad MR
    J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical simulation of mechanical mitral heart valve closure.
    Aluri S; Chandran KB
    Ann Biomed Eng; 2001 Aug; 29(8):665-76. PubMed ID: 11556723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro and in silico approaches to quantify the effects of the Mitraclip
    Sturla F; Vismara R; Jaworek M; Votta E; Romitelli P; Pappalardo OA; Lucherini F; Antona C; Fiore GB; Redaelli A
    J Biomech; 2017 Jan; 50():83-92. PubMed ID: 27863743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonhomogeneous deformation in the anterior leaflet of the mitral valve.
    Chen L; McCulloch AD; May-Newman K
    Ann Biomed Eng; 2004 Dec; 32(12):1599-606. PubMed ID: 15675673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Replacement of mitral valve posterior chordae tendineae with expanded polytetrafluoroethylene suture: a finite element study.
    Kunzelman K; Reimink MS; Verrier ED; Cochran RP
    J Card Surg; 1996; 11(2):136-45; discussion 146. PubMed ID: 8811408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic modelling of prosthetic chorded mitral valves using the immersed boundary method.
    Watton PN; Luo XY; Wang X; Bernacca GM; Molloy P; Wheatley DJ
    J Biomech; 2007; 40(3):613-26. PubMed ID: 16584739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A computational procedure for prediction of structural effects of edge-to-edge repair on mitral valve.
    Avanzini A
    J Biomech Eng; 2008 Jun; 130(3):031015. PubMed ID: 18532864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is it possible to assess the best mitral valve repair in the individual patient? Preliminary results of a finite element study from magnetic resonance imaging data.
    Sturla F; Onorati F; Votta E; Pechlivanidis K; Stevanella M; Milano AD; Puppini G; Mazzucco A; Redaelli A; Faggian G
    J Thorac Cardiovasc Surg; 2014 Sep; 148(3):1025-34; discussion 1034. PubMed ID: 25052823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Material modeling of cardiac valve tissue: Experiments, constitutive analysis and numerical investigation.
    Heyden S; Nagler A; Bertoglio C; Biehler J; Gee MW; Wall WA; Ortiz M
    J Biomech; 2015 Dec; 48(16):4287-96. PubMed ID: 26592436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A finite strain nonlinear human mitral valve model with fluid-structure interaction.
    Gao H; Ma X; Qi N; Berry C; Griffith BE; Luo X
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1597-613. PubMed ID: 25319496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design considerations and quantitative assessment for the development of percutaneous mitral valve stent.
    Kumar GP; Cui F; Phang HQ; Su B; Leo HL; Hon JK
    Med Eng Phys; 2014 Jul; 36(7):882-8. PubMed ID: 24746106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling active muscle contraction in mitral valve leaflets during systole: a first approach.
    Skallerud B; Prot V; Nordrum IS
    Biomech Model Mechanobiol; 2011 Feb; 10(1):11-26. PubMed ID: 20419330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite Element Analysis of Patient-Specific Mitral Valve with Mitral Regurgitation.
    Pham T; Kong F; Martin C; Wang Q; Primiano C; McKay R; Elefteriades J; Sun W
    Cardiovasc Eng Technol; 2017 Mar; 8(1):3-16. PubMed ID: 28070866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.