These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32762636)

  • 1. CcpN: a moonlighting protein regulating catabolite repression of gluconeogenic genes in
    Sharma K; Sultana T; Dahms TES; Dillon JR
    Can J Microbiol; 2020 Dec; 66(12):723-732. PubMed ID: 32762636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
    Servant P; Le Coq D; Aymerich S
    Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CcpN controls central carbon fluxes in Bacillus subtilis.
    Tännler S; Fischer E; Le Coq D; Doan T; Jamet E; Sauer U; Aymerich S
    J Bacteriol; 2008 Sep; 190(18):6178-87. PubMed ID: 18586936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis.
    Licht A; Golbik R; Brantl S
    J Mol Biol; 2008 Jun; 380(1):17-30. PubMed ID: 18511073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters.
    Licht A; Brantl S
    J Biol Chem; 2009 Oct; 284(44):30032-8. PubMed ID: 19726675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis.
    Eckart RA; Brantl S; Licht A
    FEMS Microbiol Lett; 2009 Oct; 299(2):223-31. PubMed ID: 19732150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding.
    Licht A; Brantl S
    J Mol Biol; 2006 Dec; 364(3):434-48. PubMed ID: 17011578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SR1--a small RNA with two remarkably conserved functions.
    Gimpel M; Preis H; Barth E; Gramzow L; Brantl S
    Nucleic Acids Res; 2012 Dec; 40(22):11659-72. PubMed ID: 23034808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Bacillus subtilis DivIVA protein has a sporulation-specific proximity to Spo0J.
    Perry SE; Edwards DH
    J Bacteriol; 2006 Aug; 188(16):6039-43. PubMed ID: 16885474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis.
    Tanaka K; Iwasaki K; Morimoto T; Matsuse T; Hasunuma T; Takenaka S; Chumsakul O; Ishikawa S; Ogasawara N; Yoshida K
    BMC Microbiol; 2015 Feb; 15():43. PubMed ID: 25880922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DivIVA-mediated polar localization of ComN, a posttranscriptional regulator of Bacillus subtilis.
    dos Santos VT; Bisson-Filho AW; Gueiros-Filho FJ
    J Bacteriol; 2012 Jul; 194(14):3661-9. PubMed ID: 22582279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EF1025, a Hypothetical Protein From
    Sharma K; Sultana T; Liao M; Dahms TES; Dillon JR
    Front Microbiol; 2020; 11():83. PubMed ID: 32117116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis.
    Licht A; Preis S; Brantl S
    Mol Microbiol; 2005 Oct; 58(1):189-206. PubMed ID: 16164558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-protein interaction domains of Bacillus subtilis DivIVA.
    van Baarle S; Celik IN; Kaval KG; Bramkamp M; Hamoen LW; Halbedel S
    J Bacteriol; 2013 Mar; 195(5):1012-21. PubMed ID: 23264578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis.
    Wang G; Bai L; Wang Z; Shi T; Chen T; Zhao X
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1893-900. PubMed ID: 24477882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis.
    Patrick JE; Kearns DB
    Mol Microbiol; 2008 Dec; 70(5):1166-79. PubMed ID: 18976281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of Bacillus subtilis transposon mutants with altered riboflavin production.
    Tännler S; Zamboni N; Kiraly C; Aymerich S; Sauer U
    Metab Eng; 2008 Sep; 10(5):216-26. PubMed ID: 18582593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Septal membrane localization by C-terminal amphipathic α-helices of MinD in Bacillus subtilis mutant cells lacking MinJ or DivIVA.
    Ishikawa K; Matsuoka S; Hara H; Matsumoto K
    Genes Genet Syst; 2017 Oct; 92(2):81-98. PubMed ID: 28674273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomerization of the Bacillus subtilis division protein DivIVA.
    Muchová KN; Kutejová E; Scott DJ; Brannigan JA; Lewis RJ; Wilkinson AJ; Barák I
    Microbiology (Reading); 2002 Mar; 148(Pt 3):807-813. PubMed ID: 11882716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes.
    Nagarajan DR; Krishnan C
    Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.