BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 32763254)

  • 1. Pathophysiological implications of RNP granules in frontotemporal dementia and ALS.
    Desai P; Bandopadhyay R
    Neurochem Int; 2020 Nov; 140():104819. PubMed ID: 32763254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNP granules in ALS and neurodegeneration: From multifunctional membraneless organelles to therapeutic opportunities.
    Shelkovnikova TA; Hautbergue GM
    Int Rev Neurobiol; 2024; 176():455-479. PubMed ID: 38802180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins.
    Ratti A; Buratti E
    J Neurochem; 2016 Aug; 138 Suppl 1():95-111. PubMed ID: 27015757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ALS and FTD: Where RNA metabolism meets protein quality control.
    Mandrioli J; Mediani L; Alberti S; Carra S
    Semin Cell Dev Biol; 2020 Mar; 99():183-192. PubMed ID: 31254610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TDP-43 and Tau Oligomers in Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia.
    Montalbano M; McAllen S; Cascio FL; Sengupta U; Garcia S; Bhatt N; Ellsworth A; Heidelman EA; Johnson OD; Doskocil S; Kayed R
    Neurobiol Dis; 2020 Dec; 146():105130. PubMed ID: 33065281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons.
    Gopal PP; Nirschl JJ; Klinman E; Holzbaur EL
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):E2466-E2475. PubMed ID: 28265061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia.
    Jovičić A; Paul JW; Gitler AD
    J Neurochem; 2016 Aug; 138 Suppl 1():134-44. PubMed ID: 27087014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered mRNP granule dynamics in FTLD pathogenesis.
    Bowden HA; Dormann D
    J Neurochem; 2016 Aug; 138 Suppl 1():112-33. PubMed ID: 26938019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connecting the "dots": RNP granule network in health and disease.
    An H; de Meritens CR; Shelkovnikova TA
    Biochim Biophys Acta Mol Cell Res; 2021 Jul; 1868(8):119058. PubMed ID: 33989700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders.
    Naskar A; Nayak A; Salaikumaran MR; Vishal SS; Gopal PP
    Front Mol Neurosci; 2023; 16():1242925. PubMed ID: 37720552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.
    Mackenzie IR; Rademakers R; Neumann M
    Lancet Neurol; 2010 Oct; 9(10):995-1007. PubMed ID: 20864052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD.
    Fang MY; Markmiller S; Vu AQ; Javaherian A; Dowdle WE; Jolivet P; Bushway PJ; Castello NA; Baral A; Chan MY; Linsley JW; Linsley D; Mercola M; Finkbeiner S; Lecuyer E; Lewcock JW; Yeo GW
    Neuron; 2019 Sep; 103(5):802-819.e11. PubMed ID: 31272829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenesis of FUS-associated ALS and FTD: insights from rodent models.
    Nolan M; Talbot K; Ansorge O
    Acta Neuropathol Commun; 2016 Sep; 4(1):99. PubMed ID: 27600654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathological phase transitions in ALS-FTD impair dynamic RNA-protein granules.
    Nedelsky NB; Taylor JP
    RNA; 2022 Jan; 28(1):97-113. PubMed ID: 34706979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic functions of TDP-43 and FUS and their role in ALS.
    Birsa N; Bentham MP; Fratta P
    Semin Cell Dev Biol; 2020 Mar; 99():193-201. PubMed ID: 31132467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase separation of RNA-binding proteins in physiology and disease: An introduction to the JBC Reviews thematic series.
    Shorter J
    J Biol Chem; 2019 May; 294(18):7113-7114. PubMed ID: 30948513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of ataxin-2 in pathological cascades mediated by TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma (FUS).
    Nihei Y; Ito D; Suzuki N
    J Biol Chem; 2012 Nov; 287(49):41310-23. PubMed ID: 23048034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum.
    Thomas M; Alegre-Abarrategui J; Wade-Martins R
    Brain; 2013 May; 136(Pt 5):1345-60. PubMed ID: 23474849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins.
    Duan Y; Du A; Gu J; Duan G; Wang C; Gui X; Ma Z; Qian B; Deng X; Zhang K; Sun L; Tian K; Zhang Y; Jiang H; Liu C; Fang Y
    Cell Res; 2019 Mar; 29(3):233-247. PubMed ID: 30728452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-binding proteins with prion-like domains in health and disease.
    Harrison AF; Shorter J
    Biochem J; 2017 Apr; 474(8):1417-1438. PubMed ID: 28389532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.