BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 32763398)

  • 1. Functional analysis of a novel lytic polysaccharide monooxygenase from Streptomyces griseus on cellulose and chitin.
    Sato K; Chiba D; Yoshida S; Takahashi M; Totani K; Shida Y; Ogasawara W; Nakagawa YS
    Int J Biol Macromol; 2020 Dec; 164():2085-2091. PubMed ID: 32763398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity.
    Jensen MS; Klinkenberg G; Bissaro B; Chylenski P; Vaaje-Kolstad G; Kvitvang HF; Nærdal GK; Sletta H; Forsberg Z; Eijsink VGH
    J Biol Chem; 2019 Dec; 294(50):19349-19364. PubMed ID: 31656228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in
    Li J; Goddard-Borger ED; Raji O; Saxena H; Solhi L; Mathieu Y; Master ER; Wakarchuk WW; Brumer H
    Appl Environ Microbiol; 2022 Aug; 88(15):e0096822. PubMed ID: 35862679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin.
    Mekasha S; Tuveng TR; Askarian F; Choudhary S; Schmidt-Dannert C; Niebisch A; Modregger J; Vaaje-Kolstad G; Eijsink VGH
    J Biol Chem; 2020 Jul; 295(27):9134-9146. PubMed ID: 32398257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.
    Forsberg Z; Mackenzie AK; Sørlie M; Røhr ÅK; Helland R; Arvai AS; Vaaje-Kolstad G; Eijsink VG
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8446-51. PubMed ID: 24912171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.
    Forsberg Z; Røhr AK; Mekasha S; Andersson KK; Eijsink VG; Vaaje-Kolstad G; Sørlie M
    Biochemistry; 2014 Mar; 53(10):1647-56. PubMed ID: 24559135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A small lytic polysaccharide monooxygenase from Streptomyces griseus targeting α- and β-chitin.
    Nakagawa YS; Kudo M; Loose JS; Ishikawa T; Totani K; Eijsink VG; Vaaje-Kolstad G
    FEBS J; 2015 Mar; 282(6):1065-79. PubMed ID: 25605134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast purification method of functional LPMOs from Streptomyces ambofaciens by affinity adsorption.
    Valenzuela SV; Ferreres G; Margalef G; Pastor FIJ
    Carbohydr Res; 2017 Aug; 448():205-211. PubMed ID: 28366436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and characterization of a lytic polysaccharide monooxygenase from Bacillus thuringiensis.
    Zhang H; Zhao Y; Cao H; Mou G; Yin H
    Int J Biol Macromol; 2015 Aug; 79():72-5. PubMed ID: 25936286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel AA10 from Paenibacillus curdlanolyticus and its synergistic action on crystalline and complex polysaccharides.
    Limsakul P; Phitsuwan P; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka M; Sakka K; Ratanakhanokchai K
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7533-7550. PubMed ID: 32651597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The
    Yao RA; Reyre J-L; Tamburrini KC; Haon M; Tranquet O; Nalubothula A; Mukherjee S; Le Gall S; Grisel S; Longhi S; Madhuprakash J; Bissaro B; Berrin J-G
    Appl Environ Microbiol; 2023 Oct; 89(10):e0057323. PubMed ID: 37702503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Four Chitin-Active Lytic Polysaccharide Monooxygenases from
    Nakagawa YS; Kudo M; Onodera R; Ang LZP; Watanabe T; Totani K; Eijsink VGH; Vaaje-Kolstad G
    J Agric Food Chem; 2020 Nov; 68(47):13641-13650. PubMed ID: 33151668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.
    Frandsen KE; Simmons TJ; Dupree P; Poulsen JC; Hemsworth GR; Ciano L; Johnston EM; Tovborg M; Johansen KS; von Freiesleben P; Marmuse L; Fort S; Cottaz S; Driguez H; Henrissat B; Lenfant N; Tuna F; Baldansuren A; Davies GJ; Lo Leggio L; Walton PH
    Nat Chem Biol; 2016 Apr; 12(4):298-303. PubMed ID: 26928935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs).
    Frandsen KEH; Haon M; Grisel S; Henrissat B; Lo Leggio L; Berrin JG
    J Biol Chem; 2021; 296():100086. PubMed ID: 33199373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere.
    Munzone A; El Kerdi B; Fanuel M; Rogniaux H; Ropartz D; Réglier M; Royant A; Simaan AJ; Decroos C
    FEBS J; 2020 Aug; 287(15):3298-3314. PubMed ID: 31903721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interplay between lytic polysaccharide monooxygenases and glycoside hydrolases.
    Sørlie M; Keller MB; Westh P
    Essays Biochem; 2023 Apr; 67(3):551-559. PubMed ID: 36876880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.
    Isaksen T; Westereng B; Aachmann FL; Agger JW; Kracher D; Kittl R; Ludwig R; Haltrich D; Eijsink VG; Horn SJ
    J Biol Chem; 2014 Jan; 289(5):2632-42. PubMed ID: 24324265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation.
    Courtade G; Forsberg Z; Heggset EB; Eijsink VGH; Aachmann FL
    J Biol Chem; 2018 Aug; 293(34):13006-13015. PubMed ID: 29967065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.