BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32763562)

  • 1. Interactive effects of extreme temperature and a widespread coastal metal contaminant reduce the fitness of a common tropical copepod across generations.
    Dinh KV; Nguyen QTT; Vo TM; Bui TB; Dao TS; Tran DM; Doan NX; Truong TSH; Wisz MS; Nielsen TG; Vu MTT; Le MH
    Mar Pollut Bull; 2020 Oct; 159():111509. PubMed ID: 32763562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parental exposures increase the vulnerability of copepod offspring to copper and a simulated marine heatwave.
    Dinh KV; Doan KLU; Doan NX; Pham HQ; Le THO; Le MH; Vu MTT; Dahms HU; Truong KN
    Environ Pollut; 2021 Oct; 287():117603. PubMed ID: 34147778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of metal adaptation in a tropical marine zooplankton.
    Dinh KV; Dinh HT; Pham HT; Selck H; Truong KN
    Sci Rep; 2020 Jun; 10(1):10212. PubMed ID: 32576953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme temperature impairs growth and productivity in a common tropical marine copepod.
    Doan NX; Vu MTT; Pham HQ; Wisz MS; Nielsen TG; Dinh KV
    Sci Rep; 2019 Mar; 9(1):4550. PubMed ID: 30872725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intergenerational effects of resuspended sediment and trace metal mixtures on life cycle traits of a pelagic copepod.
    Das S; Ouddane B; Hwang JS; Souissi S
    Environ Pollut; 2020 Dec; 267():115460. PubMed ID: 32892010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in lethal response between male and female calanoid copepods and life cycle traits to cadmium toxicity.
    Kadiene EU; Bialais C; Ouddane B; Hwang JS; Souissi S
    Ecotoxicology; 2017 Nov; 26(9):1227-1239. PubMed ID: 28990129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predation Risk Potentiates Toxicity of a Common Metal Contaminant in a Coastal Copepod.
    Lode T; Heuschele J; Andersen T; Titelman J; Hylland K; Borgå K
    Environ Sci Technol; 2018 Nov; 52(22):13535-13542. PubMed ID: 30338992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acclimation effect and fitness cost of copper resistance in the marine copepod Tigriopus japonicus.
    Kwok KW; Grist EP; Leung KM
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):358-64. PubMed ID: 18842299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Warmer temperature increases mercury toxicity in a marine copepod.
    Bai Z; Wang M
    Ecotoxicol Environ Saf; 2020 Sep; 201():110861. PubMed ID: 32544748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Lui GC; Leung KM
    Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenerational exposure to marine heatwaves ameliorates the lethal effect on tropical copepods regardless of predation stress.
    Truong KN; Vu NA; Doan NX; Bui CV; Le MH; Vu MTT; Dinh KV
    Ecol Evol; 2022 Aug; 12(8):e9149. PubMed ID: 35949526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock response and metabolic stress in the tropical estuarine copepod Pseudodiaptomus annandalei converge at its upper thermal optimum.
    Low JSY; Chew LL; Ng CC; Goh HC; Lehette P; Chong VC
    J Therm Biol; 2018 May; 74():14-22. PubMed ID: 29801619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of pulse exposures of metal toxicants on different life stages of the tropical copepod Acartia sinjiensis.
    Stone S; McKnight K; Legendre L; Koppel DJ; Binet MT; Simpson SL; Jolley DF
    Environ Pollut; 2021 Sep; 285():117212. PubMed ID: 33933874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenerational Proteome Plasticity in Resilience of a Marine Copepod in Response to Environmentally Relevant Concentrations of Microplastics.
    Zhang C; Jeong CB; Lee JS; Wang D; Wang M
    Environ Sci Technol; 2019 Jul; 53(14):8426-8436. PubMed ID: 31246436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting Effects of Predation Risk and Copper on Copepod Respiration Rates.
    Lode T; Heuschele J; Andersen T; Titelman J; Hylland K; Borgå K
    Environ Toxicol Chem; 2020 Sep; 39(9):1765-1773. PubMed ID: 32557750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint effects of temperature and copper exposure on developmental and gene-expression responses of the marine copepod Tigriopus japonicus.
    Li AJ; Lai RWS; Zhou GJ; Leung PTY; Zeng EY; Leung KMY
    Ecotoxicology; 2023 Apr; 32(3):336-343. PubMed ID: 36964297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute and chronic toxicity of cadmium on the copepod Pseudodiaptomus annandalei: A life history traits approach.
    Kadiene EU; Meng PJ; Hwang JS; Souissi S
    Chemosphere; 2019 Oct; 233():396-404. PubMed ID: 31176903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change and oil pollution: A dangerous cocktail for tropical zooplankton.
    Hernández Ruiz L; Ekumah B; Asiedu DA; Albani G; Acheampong E; Jónasdóttir SH; Koski M; Nielsen TG
    Aquat Toxicol; 2021 Feb; 231():105718. PubMed ID: 33360235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproductive and developmental effects of atrazine on the estuarine meiobenthic copepod Amphiascus tenuiremis.
    Bejarano AC; Chandler GT
    Environ Toxicol Chem; 2003 Dec; 22(12):3009-16. PubMed ID: 14713043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multigenerational study of life history traits, bioaccumulation, and molecular responses of Pseudodiaptomus annandalei to cadmium.
    Kadiene EU; Ouddane B; Gong HY; Hwang JS; Souissi S
    Ecotoxicol Environ Saf; 2022 Jan; 230():113171. PubMed ID: 34999339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.