These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 32763573)
1. The migration of cadmium and lead in soil columns and their bioaccumulation in a multi-species soil system. Lai C; Li D; Qin J; Li J; Yan Z; Chen G; Li H Chemosphere; 2021 Jan; 262():127718. PubMed ID: 32763573 [TBL] [Abstract][Full Text] [Related]
2. Assessment of earthworm activity on Cu, Cd, Pb and Zn bioavailability in contaminated soils using biota to soil accumulation factor and DTPA extraction. Xiao L; Li MH; Dai J; Motelica-Heino M; Chen XF; Wu JL; Zhao L; Liu K; Zhang C Ecotoxicol Environ Saf; 2020 Jun; 195():110513. PubMed ID: 32213370 [TBL] [Abstract][Full Text] [Related]
3. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars. Liu W; Liang L; Zhang X; Zhou Q Environ Sci Pollut Res Int; 2015 Jun; 22(11):8432-41. PubMed ID: 25548022 [TBL] [Abstract][Full Text] [Related]
4. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Veltman K; Huijbregts MA; Vijver MG; Peijnenburg WJ; Hobbelen PH; Koolhaas JE; van Gestel CA; van Vliet PC; Hendriks AJ Environ Pollut; 2007 Mar; 146(2):428-36. PubMed ID: 16938367 [TBL] [Abstract][Full Text] [Related]
5. Influences of phosphate nutritional level on the phytoavailability and speciation distribution of cadmium and lead in soil. Chen S; Sun TH; Sun LN; Zhou QX; Chao L J Environ Sci (China); 2006; 18(6):1247-53. PubMed ID: 17294973 [TBL] [Abstract][Full Text] [Related]
6. Exotic Earthworms Decrease Cd, Hg, and Pb Pools in Upland Forest Soils of Vermont and New Hampshire USA. Richardson JB; Görres JH; Friedland AJ Bull Environ Contam Toxicol; 2017 Oct; 99(4):428-432. PubMed ID: 28884204 [TBL] [Abstract][Full Text] [Related]
7. Metal/metalloid (As, Cd and Zn) bioaccumulation in the earthworm Eisenia andrei under different scenarios of climate change. González-Alcaraz MN; van Gestel CAM Environ Pollut; 2016 Aug; 215():178-186. PubMed ID: 27182979 [TBL] [Abstract][Full Text] [Related]
8. [Interaction and Transport Characteristics of Lead and Cadmium in Different Soil-wheat Systems]. Kou M; Fan Y; Su MX; Xiong J; Wang MX; Tan WF Huan Jing Ke Xue; 2023 Nov; 44(11):6319-6327. PubMed ID: 37973114 [TBL] [Abstract][Full Text] [Related]
9. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Ernst G; Zimmermann S; Christie P; Frey B Environ Pollut; 2008 Dec; 156(3):1304-13. PubMed ID: 18400348 [TBL] [Abstract][Full Text] [Related]
10. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems. Zhao S; Zhu L Environ Pollut; 2017 Jan; 220(Pt A):124-131. PubMed ID: 27639617 [TBL] [Abstract][Full Text] [Related]
11. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Lee TM; Lai HY; Chen ZS Chemosphere; 2004 Dec; 57(10):1459-71. PubMed ID: 15519390 [TBL] [Abstract][Full Text] [Related]
12. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Xu P; Sun CX; Ye XZ; Xiao WD; Zhang Q; Wang Q Ecotoxicol Environ Saf; 2016 Oct; 132():94-100. PubMed ID: 27285283 [TBL] [Abstract][Full Text] [Related]
13. Earthworms, Rice Straw, and Plant Interactions Change the Organic Connections in Soil and Promote the Decontamination of Cadmium in Soil. Elyamine AM; Moussa MG; Ismael MA; Wei J; Zhao Y; Wu Y; Hu C Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30380659 [TBL] [Abstract][Full Text] [Related]
14. Field isotopic study of lead fate and compartmentalization in earthworm-soil-metal particle systems for highly polluted soil near Pb recycling factory. Goix S; Mombo S; Schreck E; Pierart A; Lévêque T; Deola F; Dumat C Chemosphere; 2015 Nov; 138():10-7. PubMed ID: 26025429 [TBL] [Abstract][Full Text] [Related]
15. Method for determining toxicologically relevant cadmium residues in the earthworm Eisenia fetida. Conder JM; Seals LD; Lanno RP Chemosphere; 2002 Oct; 49(1):1-7. PubMed ID: 12243324 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of cadmium uptake and subcellular partitioning in the earthworm Eisenia fetida exposed to cadmium-contaminated soil. Li L; Zhou D; Wang P; Peijnenburg WJ Arch Environ Contam Toxicol; 2009 Nov; 57(4):718-24. PubMed ID: 19234863 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the immobilization effectiveness of several amendments on a cadmium-contaminated soil using Eisenia fetida. Guo F; Ding C; Zhou Z; Han F; Tang R; Huang G; Wang X Ecotoxicol Environ Saf; 2020 Feb; 189():109948. PubMed ID: 31759738 [TBL] [Abstract][Full Text] [Related]
18. Eisenia fetida impact on cadmium availability and distribution in specific components of the earthworm drilosphere. Ge Y; Huang C; Zhou W; Shen Z; Qiao Y Environ Sci Pollut Res Int; 2023 Nov; 30(52):112222-112235. PubMed ID: 37831264 [TBL] [Abstract][Full Text] [Related]
19. Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study. Nirola R; Megharaj M; Venkateswarlu K; Aryal R; Correll R; Naidu R Ecotoxicol Environ Saf; 2016 Jul; 129():264-72. PubMed ID: 27057994 [TBL] [Abstract][Full Text] [Related]
20. Effect of Wheat-Solanum nigrum L. intercropping on Cd accumulation by plants and soil bacterial community under Cd contaminated soil. Wang L; Zou R; Li YC; Tong Z; You M; Huo W; Chi K; Fan H Ecotoxicol Environ Saf; 2020 Dec; 206():111383. PubMed ID: 33002822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]