These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 32763578)
1. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Kumar V; Pandita S; Singh Sidhu GP; Sharma A; Khanna K; Kaur P; Bali AS; Setia R Chemosphere; 2021 Jan; 262():127810. PubMed ID: 32763578 [TBL] [Abstract][Full Text] [Related]
2. Effects of sulfur on toxicity and bioavailability of Cu for castor (Ricinus communis L.) in Cu-contaminated soil. Ren C; You J; Qi Y; Huang G; Hu H Environ Sci Pollut Res Int; 2017 Dec; 24(35):27476-27483. PubMed ID: 28980167 [TBL] [Abstract][Full Text] [Related]
3. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Verdejo J; Ginocchio R; Sauvé S; Salgado E; Neaman A Ecotoxicol Environ Saf; 2015 Dec; 122():171-7. PubMed ID: 26233921 [TBL] [Abstract][Full Text] [Related]
4. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
6. Bioavailability, mobility, and toxicity of Cu in soils around the Dexing Cu mine in China. Guo G; Yuan T; Wang W; Li D; Cheng J; Gao Y; Zhou P Environ Geochem Health; 2011 Apr; 33(2):217-24. PubMed ID: 20697779 [TBL] [Abstract][Full Text] [Related]
7. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Shahid M; Shamshad S; Rafiq M; Khalid S; Bibi I; Niazi NK; Dumat C; Rashid MI Chemosphere; 2017 Jul; 178():513-533. PubMed ID: 28347915 [TBL] [Abstract][Full Text] [Related]
8. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper. De Conti L; Ceretta CA; Tiecher TL; da Silva LOS; Tassinari A; Somavilla LM; Mimmo T; Cesco S; Brunetto G Ecotoxicol Environ Saf; 2018 Nov; 163():19-27. PubMed ID: 30031941 [TBL] [Abstract][Full Text] [Related]
9. Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Mir AR; Pichtel J; Hayat S Biometals; 2021 Aug; 34(4):737-759. PubMed ID: 33909216 [TBL] [Abstract][Full Text] [Related]
10. Iron fertilization to enhance tolerance mechanisms to copper toxicity of ryegrass plants used as cover crop in vineyards. De Conti L; Cesco S; Mimmo T; Pii Y; Valentinuzzi F; B Melo GW; Ceretta CA; Trentin E; Marques ACR; Brunetto G Chemosphere; 2020 Mar; 243():125298. PubMed ID: 31731135 [TBL] [Abstract][Full Text] [Related]
11. Biogeochemical cycling, tolerance mechanism and phytoremediation strategies of boron in plants: A critical review. Kumar V; Pandita S; Kaur R; Kumar A; Bhardwaj R Chemosphere; 2022 Aug; 300():134505. PubMed ID: 35395266 [TBL] [Abstract][Full Text] [Related]
12. Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. De Conti L; Ceretta CA; Melo GWB; Tiecher TL; Silva LOS; Garlet LP; Mimmo T; Cesco S; Brunetto G Chemosphere; 2019 Feb; 216():147-156. PubMed ID: 30366268 [TBL] [Abstract][Full Text] [Related]
13. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Natasha ; Shahid M; Niazi NK; Khalid S; Murtaza B; Bibi I; Rashid MI Environ Pollut; 2018 Mar; 234():915-934. PubMed ID: 29253832 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Andrade SA; Silveira AP; Mazzafera P Sci Total Environ; 2010 Oct; 408(22):5381-91. PubMed ID: 20716461 [TBL] [Abstract][Full Text] [Related]
15. Copper interactions on arsenic bioavailability and phytotoxicity in soil. Kader M; Lamb DT; Wang L; Megharaj M; Naidu R Ecotoxicol Environ Saf; 2018 Feb; 148():738-746. PubMed ID: 29179146 [TBL] [Abstract][Full Text] [Related]
16. The effect of excess copper on growth and physiology of important food crops: a review. Adrees M; Ali S; Rizwan M; Ibrahim M; Abbas F; Farid M; Zia-Ur-Rehman M; Irshad MK; Bharwana SA Environ Sci Pollut Res Int; 2015 Jun; 22(11):8148-62. PubMed ID: 25874438 [TBL] [Abstract][Full Text] [Related]
17. Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Cui JL; Zhao YP; Lu YJ; Chan TS; Zhang LL; Tsang DCW; Li XD Environ Int; 2019 May; 126():717-726. PubMed ID: 30878867 [TBL] [Abstract][Full Text] [Related]
18. Bioremediation of copper-contaminated soils by bacteria. Cornu JY; Huguenot D; Jézéquel K; Lollier M; Lebeau T World J Microbiol Biotechnol; 2017 Feb; 33(2):26. PubMed ID: 28044274 [TBL] [Abstract][Full Text] [Related]
19. Toxicity and metal bioaccumulation in Hordeum vulgare exposed to leached and nonleached copper amended soils. Schwertfeger DM; Hendershot WH Environ Toxicol Chem; 2013 Aug; 32(8):1800-9. PubMed ID: 23606189 [TBL] [Abstract][Full Text] [Related]
20. Bioavailability of copper and zinc in mining soils. Smith BA; Greenberg B; Stephenson GL Arch Environ Contam Toxicol; 2012 Jan; 62(1):1-12. PubMed ID: 21594672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]