These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32763637)
1. Deep insight into the effect of NaCl/HCl/SO Yu S; Zhang C; Ma L; Tan P; Fang Q; Chen G J Hazard Mater; 2021 Feb; 403():123617. PubMed ID: 32763637 [TBL] [Abstract][Full Text] [Related]
2. Adsorption and reaction mechanism of arsenic vapors over γ-Al Hu H; Chen D; Liu H; Yang Y; Cai H; Shen J; Yao H Chemosphere; 2017 Aug; 180():186-191. PubMed ID: 28407548 [TBL] [Abstract][Full Text] [Related]
3. Capture of gas-phase arsenic oxide by lime: kinetic and mechanistic studies. Jadhav RA; Fan LS Environ Sci Technol; 2001 Feb; 35(4):794-9. PubMed ID: 11349294 [TBL] [Abstract][Full Text] [Related]
4. Insights into chromium removal mechanism by Ca-based sorbents from flue gas. Zhang A; Liu J; Yang Y; Li Y Sci Total Environ; 2024 Feb; 912():168928. PubMed ID: 38049006 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous removal of SO2 and trace As2O3 from flue gas: mechanism, kinetics study, and effect of main gases on arsenic capture. Li Y; Tong H; Zhuo Y; Li Y; Xu X Environ Sci Technol; 2007 Apr; 41(8):2894-900. PubMed ID: 17533855 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effects of Fe-Mn binary oxide for gaseous arsenic removal in flue gas. He KQ; Yuan CG; Jiang YH; Duan XL; Li Y; Shi MD Ecotoxicol Environ Saf; 2021 Jan; 207():111491. PubMed ID: 33254387 [TBL] [Abstract][Full Text] [Related]
7. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units. Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812 [TBL] [Abstract][Full Text] [Related]
8. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants. Shemwell BE; Ergut A; Levendis YA J Air Waste Manag Assoc; 2002 May; 52(5):521-34. PubMed ID: 12022692 [TBL] [Abstract][Full Text] [Related]
9. In-Furnace Control of Arsenic Vapor Emissions Using Fe Song B; Yuan K; Wei Y; Chen D; Meng F; Cao Q; Song M; Liu H Environ Sci Technol; 2021 Jul; 55(13):8613-8621. PubMed ID: 34165282 [TBL] [Abstract][Full Text] [Related]
10. Experimental and DFT studies on the characteristics of PbO/PbCl Yu S; Zhang C; Ma L; Fang Q; Chen G J Hazard Mater; 2021 Apr; 407():124742. PubMed ID: 33333389 [TBL] [Abstract][Full Text] [Related]
11. Unlocking high-performance HCl adsorption at elevated temperatures: the synthesis and characterization of robust Ca-Mg-Al mixed oxides. Cao J; Cao S; Zhu H Environ Sci Pollut Res Int; 2024 Apr; 31(18):27318-27328. PubMed ID: 38507166 [TBL] [Abstract][Full Text] [Related]
12. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms. Li S; Gong H; Hu H; Liu H; Huang Y; Fu B; Wang L; Yao H Chemosphere; 2020 Sep; 254():126700. PubMed ID: 32334244 [TBL] [Abstract][Full Text] [Related]
13. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury. Tang H; Duan Y; Zhu C; Cai T; Li C; Cai L Chemosphere; 2017 Oct; 184():711-719. PubMed ID: 28641222 [TBL] [Abstract][Full Text] [Related]
14. Impact of fly ash composition on mercury speciation in simulated flue gas. Bhardwaj R; Chen X; Vidic RD J Air Waste Manag Assoc; 2009 Nov; 59(11):1331-8. PubMed ID: 19947114 [TBL] [Abstract][Full Text] [Related]
15. Active methods of mercury removal from flue gases. Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741 [TBL] [Abstract][Full Text] [Related]
16. Cost-Effective Manganese Ore Sorbent for Elemental Mercury Removal from Flue Gas. Yang Y; Miao S; Liu J; Wang Z; Yu Y Environ Sci Technol; 2019 Aug; 53(16):9957-9965. PubMed ID: 31369246 [TBL] [Abstract][Full Text] [Related]
17. An efficient calcium-based sorbent for flue gas dry-desulfurization: promotion roles of nitrogen oxide and oxygen. Wang KQ; Gao XM; Lin B; Hua DX; Yan Y; Zhao HY; Xiao WD RSC Adv; 2023 Jan; 13(2):1312-1319. PubMed ID: 36686910 [TBL] [Abstract][Full Text] [Related]
18. Removal of elemental mercury by iodine-modified rice husk ash sorbents. Zhao P; Guo X; Zheng C J Environ Sci (China); 2010; 22(10):1629-36. PubMed ID: 21235196 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the capture mechanism of gaseous As He Z; Wei Q; Liang C; Liu D; Ma J; Chen X; Song M Chemosphere; 2023 Sep; 336():139243. PubMed ID: 37330063 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of coal gas desulfurization by iron oxide sorbents. Lin YH; Chen YC; Chu H Chemosphere; 2015 Feb; 121():62-7. PubMed ID: 25434261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]