BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32763683)

  • 1. An ATP binding cassette transporter HvABCB25 confers aluminum detoxification in wild barley.
    Liu W; Feng X; Cao F; Wu D; Zhang G; Vincze E; Wang Y; Chen ZH; Wu F
    J Hazard Mater; 2021 Jan; 401():123371. PubMed ID: 32763683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys.
    Dai H; Zhao J; Ahmed IM; Cao F; Chen ZH; Zhang G; Li C; Wu F
    Plant Physiol Biochem; 2014 Feb; 75():36-44. PubMed ID: 24361508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice.
    Huang CF; Yamaji N; Chen Z; Ma JF
    Plant J; 2012 Mar; 69(5):857-67. PubMed ID: 22035218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys.
    Dai H; Cao F; Chen X; Zhang M; Ahmed IM; Chen ZH; Li C; Zhang G; Wu F
    PLoS One; 2013; 8(5):e63428. PubMed ID: 23691047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley.
    Ahmed IM; Nadira UA; Cao F; He X; Zhang G; Wu F
    Planta; 2016 Apr; 243(4):973-85. PubMed ID: 26748913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley.
    Feng X; Liu W; Dai H; Qiu Y; Zhang G; Chen ZH; Wu F
    J Exp Bot; 2020 Oct; 71(19):6057-6073. PubMed ID: 32588054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Aluminum-Inducible IREG Gene is Required for Internal Detoxification of Aluminum in Buckwheat.
    Yokosho K; Yamaji N; Mitani-Ueno N; Shen RF; Ma JF
    Plant Cell Physiol; 2016 Jun; 57(6):1169-78. PubMed ID: 27053033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of two half-size ABC transporter genes in aluminium-accumulating buckwheat.
    Lei GJ; Yokosho K; Yamaji N; Fujii-Kashino M; Ma JF
    New Phytol; 2017 Aug; 215(3):1080-1089. PubMed ID: 28620956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley.
    Wu L; Yu J; Shen Q; Huang L; Wu D; Zhang G
    BMC Genomics; 2018 Jul; 19(1):560. PubMed ID: 30064381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling.
    Feng X; Liu W; Cao F; Wang Y; Zhang G; Chen ZH; Wu F
    J Exp Bot; 2020 Oct; 71(20):6587-6600. PubMed ID: 32766860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aluminum-activated citrate transporter in barley.
    Furukawa J; Yamaji N; Wang H; Mitani N; Murata Y; Sato K; Katsuhara M; Takeda K; Ma JF
    Plant Cell Physiol; 2007 Aug; 48(8):1081-91. PubMed ID: 17634181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root vacuolar Na
    Wu H; Shabala L; Zhou M; Su N; Wu Q; Ul-Haq T; Zhu J; Mancuso S; Azzarello E; Shabala S
    Plant J; 2019 Oct; 100(1):55-67. PubMed ID: 31148333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an ATP-Binding Cassette Transporter Implicated in Aluminum Tolerance in Wild Soybean (
    Wen K; Pan H; Li X; Huang R; Ma Q; Nian H
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR393-Mediated Auxin Signaling Regulation is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley.
    Bai B; Bian H; Zeng Z; Hou N; Shi B; Wang J; Zhu M; Han N
    Plant Cell Physiol; 2017 Mar; 58(3):426-439. PubMed ID: 28064248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IDI7, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast.
    Yamaguchi H; Nishizawa NK; Nakanishi H; Mori S
    J Exp Bot; 2002 Apr; 53(369):727-35. PubMed ID: 11886893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a bacterial-type ATP-binding cassette transporter implicated in aluminum tolerance in sweet sorghum (
    Gao J; Liang Y; Li J; Wang S; Zhan M; Zheng M; Li H; Yang Z
    Plant Signal Behav; 2021 Jul; 16(7):1916211. PubMed ID: 34034635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3.
    Zhou G; Pereira JF; Delhaize E; Zhou M; Magalhaes JV; Ryan PR
    J Exp Bot; 2014 Jun; 65(9):2381-90. PubMed ID: 24692647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AcEXPA1, an α-expansin gene, participates in the aluminum tolerance of carpetgrass (Axonopus compressus) through root growth regulation.
    Li J; Liu L; Wang L; Rao IM; Wang Z; Chen Z
    Plant Cell Rep; 2024 Jun; 43(6):159. PubMed ID: 38822842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide profiling of genetic variations reveals the molecular basis of aluminum stress adaptation in Tibetan wild barley.
    Qiu CW; Ma Y; Gao ZF; Sreesaeng J; Zhang S; Liu W; Ahmed IM; Cai S; Wang Y; Zhang G; Wu F
    J Hazard Mater; 2024 Jan; 461():132541. PubMed ID: 37716271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The zinc finger transcription factor ATF1 regulates aluminum tolerance in barley.
    Wu L; Guo Y; Cai S; Kuang L; Shen Q; Wu D; Zhang G
    J Exp Bot; 2020 Oct; 71(20):6512-6523. PubMed ID: 32720977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.