BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32763971)

  • 1. R-loops promote trinucleotide repeat deletion through DNA base excision repair enzymatic activities.
    Laverde EE; Lai Y; Leng F; Balakrishnan L; Freudenreich CH; Liu Y
    J Biol Chem; 2020 Oct; 295(40):13902-13913. PubMed ID: 32763971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal.
    Beaver JM; Lai Y; Rolle SJ; Liu Y
    DNA Repair (Amst); 2016 Dec; 48():17-29. PubMed ID: 27793507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion.
    Xu M; Lai Y; Torner J; Zhang Y; Zhang Z; Liu Y
    Nucleic Acids Res; 2014 Apr; 42(6):3675-91. PubMed ID: 24423876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flap Endonuclease 1 Endonucleolytically Processes RNA to Resolve R-Loops through DNA Base Excision Repair.
    Laverde EE; Polyzos AA; Tsegay PP; Shaver M; Hutcheson JD; Balakrishnan L; McMurray CT; Liu Y
    Genes (Basel); 2022 Dec; 14(1):. PubMed ID: 36672839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deoxyribose phosphate lyase of DNA polymerase β suppresses a processive DNA synthesis to prevent trinucleotide repeat instability.
    Lai Y; Weizmann Y; Liu Y
    Nucleic Acids Res; 2018 Sep; 46(17):8940-8952. PubMed ID: 30085293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trinucleotide repeat deletion via a unique hairpin bypass by DNA polymerase β and alternate flap cleavage by flap endonuclease 1.
    Xu M; Gabison J; Liu Y
    Nucleic Acids Res; 2013 Feb; 41(3):1684-97. PubMed ID: 23258707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AP endonuclease 1 prevents trinucleotide repeat expansion via a novel mechanism during base excision repair.
    Beaver JM; Lai Y; Xu M; Casin AH; Laverde EE; Liu Y
    Nucleic Acids Res; 2015 Jul; 43(12):5948-60. PubMed ID: 25990721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trinucleotide repeat instability via DNA base excision repair.
    Lai Y; Beaver JM; Laverde E; Liu Y
    DNA Repair (Amst); 2020 Sep; 93():102912. PubMed ID: 33087278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of trinucleotide repeat instability by DNA polymerase β polymorphic variant R137Q.
    Ren Y; Lai Y; Laverde EE; Lei R; Rein HL; Liu Y
    PLoS One; 2017; 12(5):e0177299. PubMed ID: 28475635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice.
    Goula AV; Berquist BR; Wilson DM; Wheeler VC; Trottier Y; Merienne K
    PLoS Genet; 2009 Dec; 5(12):e1000749. PubMed ID: 19997493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 5', 8-cyclo-2'-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β.
    Xu M; Lai Y; Jiang Z; Terzidis MA; Masi A; Chatgilialoglu C; Liu Y
    Nucleic Acids Res; 2014 Dec; 42(22):13749-63. PubMed ID: 25428354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An oxidized abasic lesion inhibits base excision repair leading to DNA strand breaks in a trinucleotide repeat tract.
    Beaver JM; Lai Y; Rolle SJ; Weng L; Greenberg MM; Liu Y
    PLoS One; 2018; 13(2):e0192148. PubMed ID: 29389977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA base excision repair: a mechanism of trinucleotide repeat expansion.
    Liu Y; Wilson SH
    Trends Biochem Sci; 2012 Apr; 37(4):162-72. PubMed ID: 22285516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FEN1 stimulation of DNA polymerase beta mediates an excision step in mammalian long patch base excision repair.
    Prasad R; Dianov GL; Bohr VA; Wilson SH
    J Biol Chem; 2000 Feb; 275(6):4460-6. PubMed ID: 10660619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate-determining Step of Flap Endonuclease 1 (FEN1) Reflects a Kinetic Bias against Long Flaps and Trinucleotide Repeat Sequences.
    Tarantino ME; Bilotti K; Huang J; Delaney S
    J Biol Chem; 2015 Aug; 290(34):21154-21162. PubMed ID: 26160176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nucleotide sequence, DNA damage location, and protein stoichiometry influence the base excision repair outcome at CAG/CTG repeats.
    Goula AV; Pearson CE; Della Maria J; Trottier Y; Tomkinson AE; Wilson DM; Merienne K
    Biochemistry; 2012 May; 51(18):3919-32. PubMed ID: 22497302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of CAG triplet repeats by human DNA polymerases λ and β in vitro, is regulated by flap endonuclease 1 and DNA ligase 1.
    Crespan E; Hübscher U; Maga G
    DNA Repair (Amst); 2015 May; 29():101-11. PubMed ID: 25687118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of interaction of XRCC1 with DNA and proteins of base excision repair by photoaffinity labeling technique.
    Nazarkina ZhK; Khodyreva SN; Marsin S; Radicella JP; Lavrik OI
    Biochemistry (Mosc); 2007 Aug; 72(8):878-86. PubMed ID: 17922646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of functional properties of mammalian DNA polymerase lambda and DNA polymerase beta in reactions of DNA synthesis related to DNA repair.
    Lebedeva NA; Rechkunova NI; Dezhurov SV; Khodyreva SN; Favre A; Blanco L; Lavrik OI
    Biochim Biophys Acta; 2005 Aug; 1751(2):150-8. PubMed ID: 15979954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps.
    Srivastava DK; Berg BJ; Prasad R; Molina JT; Beard WA; Tomkinson AE; Wilson SH
    J Biol Chem; 1998 Aug; 273(33):21203-9. PubMed ID: 9694877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.