BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 32764225)

  • 41. Role of
    Tang X; Chen H; Gu Z; Zhang H; Chen YQ; Song Y; Chen W
    J Agric Food Chem; 2020 Apr; 68(14):4245-4251. PubMed ID: 32181644
    [No Abstract]   [Full Text] [Related]  

  • 42. (13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.
    Zhao L; Zhang H; Wang L; Chen H; Chen YQ; Chen W; Song Y
    Bioresour Technol; 2015 Dec; 197():23-9. PubMed ID: 26318243
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Developmental changes in the expression of S-acyl fatty acid synthase thioesterase gene and lipid composition in the uropygial gland of mallard ducks (Anas platyrhynchos).
    Kolattukudy PE; Bohnet S; Sasaki G; Rogers L
    Arch Biochem Biophys; 1991 Jan; 284(1):201-6. PubMed ID: 1989497
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recycling of Overactivated Acyls by a Type II Thioesterase during Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882.
    Wu H; Liang J; Gou L; Wu Q; Liang WJ; Zhou X; Bruce IJ; Deng Z; Wang Z
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654175
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tailoring the composition of novel wax esters in the seeds of transgenic Camelina sativa through systematic metabolic engineering.
    Ruiz-Lopez N; Broughton R; Usher S; Salas JJ; Haslam RP; Napier JA; Beaudoin F
    Plant Biotechnol J; 2017 Jul; 15(7):837-849. PubMed ID: 27990737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism.
    Chen L; Zhang J; Lee J; Chen WN
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6739-50. PubMed ID: 24769906
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-scale analysis of the metabolic networks of oleaginous Zygomycete fungi.
    Vongsangnak W; Ruenwai R; Tang X; Hu X; Zhang H; Shen B; Song Y; Laoteng K
    Gene; 2013 May; 521(1):180-90. PubMed ID: 23541380
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual Functions of Lip6 and Its Regulation of Lipid Metabolism in the Oleaginous Fungus Mucor circinelloides.
    Zan X; Tang X; Chu L; Song Y
    J Agric Food Chem; 2018 Mar; 66(11):2796-2804. PubMed ID: 29486557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism.
    Hunt MC; Solaas K; Kase BF; Alexson SE
    J Biol Chem; 2002 Jan; 277(2):1128-38. PubMed ID: 11673457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli.
    Gulevich AY; Skorokhodova AY; Sukhozhenko AV; Debabov VG
    J Biotechnol; 2017 Feb; 244():16-24. PubMed ID: 28131860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Medium-Chain-Length Fatty Acid Catabolism in Cupriavidus necator H16: Transcriptome Sequencing Reveals Differences from Long-Chain-Length Fatty Acid β-Oxidation and Involvement of Several Homologous Genes.
    Strittmatter CS; Poehlein A; Himmelbach A; Daniel R; Steinbüchel A
    Appl Environ Microbiol; 2023 Jan; 89(1):e0142822. PubMed ID: 36541797
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals.
    Dellomonaco C; Clomburg JM; Miller EN; Gonzalez R
    Nature; 2011 Aug; 476(7360):355-9. PubMed ID: 21832992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure-guided reshaping of the acyl binding pocket of 'TesA thioesterase enhances octanoic acid production in E. coli.
    Deng X; Chen L; Hei M; Liu T; Feng Y; Yang GY
    Metab Eng; 2020 Sep; 61():24-32. PubMed ID: 32339761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overexpression of Shinorhizobium meliloti flavohemoglobin improves cell growth and fatty acid biosynthesis in oleaginous fungus Mucor circinelloides.
    Zhang H; Kang X; Wang R; Xin F; Chang Y; Zhang Y; Song Y
    Biotechnol Lett; 2022 Apr; 44(4):595-604. PubMed ID: 35288781
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cellular and Molecular Responses of
    Lin H; Shen H; Lee YK
    Front Microbiol; 2018; 9():619. PubMed ID: 29670594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiological and Genetic Regulation for High Lipid Accumulation by
    Zou S; Huang Z; Wu X; Yu X
    Microbiol Spectr; 2022 Oct; 10(5):e0039422. PubMed ID: 36200894
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determinants of substrate specificity in a catalytically diverse family of acyl-ACP thioesterases from plants.
    Kalinger RS; Rowland O
    BMC Plant Biol; 2023 Jan; 23(1):1. PubMed ID: 36588156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.
    Tang X; Chen H; Chen YQ; Chen W; Garre V; Song Y; Ratledge C
    PLoS One; 2015; 10(6):e0128396. PubMed ID: 26046932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformational Changes of Acyl Carrier Protein Switch the Chain Length Preference of Acyl-ACP Thioesterase ChFatB2.
    Yang T; Yang Y; Yang M; Ren J; Xue C; Feng Y; Xue S
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047837
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis.
    Li M; Zhang X; Agrawal A; San KY
    Metab Eng; 2012 Jul; 14(4):380-7. PubMed ID: 22480945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.