These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32764316)

  • 1. Machine Learning Models for Classifying Physical Activity in Free-Living Preschool Children.
    Ahmadi MN; Pavey TG; Trost SG
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.
    Ahmadi MN; Brookes D; Chowdhury A; Pavey T; Trost SG
    Med Sci Sports Exerc; 2020 May; 52(5):1227-1234. PubMed ID: 31764460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Device-based measurement of physical activity in pre-schoolers: Comparison of machine learning and cut point methods.
    Ahmadi MN; Trost SG
    PLoS One; 2022; 17(4):e0266970. PubMed ID: 35417492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning to quantify habitual physical activity in children with cerebral palsy.
    Goodlich BI; Armstrong EL; Horan SA; Baque E; Carty CP; Ahmadi MN; Trost SG
    Dev Med Child Neurol; 2020 Sep; 62(9):1054-1060. PubMed ID: 32420632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dual-Accelerometer System for Detecting Human Movement in a Free-living Environment.
    Narayanan A; Stewart T; Mackay L
    Med Sci Sports Exerc; 2020 Jan; 52(1):252-258. PubMed ID: 31361712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities.
    Kwon S; Zavos P; Nickele K; Sugianto A; Albert MV
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31330889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning to Quantify Physical Activity in Children with Cerebral Palsy: Comparison of Group, Group-Personalized, and Fully-Personalized Activity Classification Models.
    Ahmadi MN; O'Neil ME; Baque E; Boyd RN; Trost SG
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age.
    Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM
    Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of activity type in preschool children using machine learning techniques.
    Hagenbuchner M; Cliff DP; Trost SG; Van Tuc N; Peoples GE
    J Sci Med Sport; 2015 Jul; 18(4):426-31. PubMed ID: 25088983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory-based and free-living algorithms for energy expenditure estimation in preschool children: A free-living evaluation.
    Ahmadi MN; Chowdhury A; Pavey T; Trost SG
    PLoS One; 2020; 15(5):e0233229. PubMed ID: 32433717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning for activity recognition: hip versus wrist data.
    Trost SG; Zheng Y; Wong WK
    Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults.
    Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA
    J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.