These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32764345)

  • 1. Hyperelastic Ex Vivo Cervical Tissue Mechanical Characterization.
    Callejas A; Melchor J; Faris IH; Rus G
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension.
    Lally C; Reid AJ; Prendergast PJ
    Ann Biomed Eng; 2004 Oct; 32(10):1355-64. PubMed ID: 15535054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the axial and circumferential mechanical properties of rat skin tissue at different anatomical locations.
    Karimi A; Haghighatnama M; Navidbakhsh M; Haghi AM
    Biomed Tech (Berl); 2015 Apr; 60(2):115-22. PubMed ID: 25389978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.
    Hosseinzadeh M; Ghoreishi M; Narooei K
    J Mech Behav Biomed Mater; 2016 Jun; 59():393-403. PubMed ID: 26953961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation.
    Voyiadjis GZ; Samadi-Dooki A
    J Mech Behav Biomed Mater; 2018 Jul; 83():63-78. PubMed ID: 29684774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional modeling of Marfan syndrome with elastic and hyperelastic materials assumptions using fluid-structure interaction.
    Rahmani S; Jarrahi A; Saed B; Navidbakhsh M; Farjpour H; Alizadeh M
    Biomed Mater Eng; 2019; 30(3):255-266. PubMed ID: 30988235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nonlinear elastic and viscoelastic passive properties of left ventricular papillary muscle of a guinea pig heart.
    Hassan MA; Hamdi M; Noma A
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):99-109. PubMed ID: 22100084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain.
    Estermann SJ; Pahr DH; Reisinger A
    J Mech Behav Biomed Mater; 2020 Dec; 112():104038. PubMed ID: 32889334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperelastic parameter identification of human articular cartilage and substitute materials.
    Weizel A; Distler T; Detsch R; Boccaccini AR; Bräuer L; Paulsen F; Seitz H; Budday S
    J Mech Behav Biomed Mater; 2022 Sep; 133():105292. PubMed ID: 35689988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment.
    Mehrabian H; Campbell G; Samani A
    Phys Med Biol; 2010 Dec; 55(24):7489-508. PubMed ID: 21098922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying the nonlinear response of incompressible hyperelastic thin circular cylindrical shells with geometric imperfections.
    Arani MS; Bakhtiari M; Toorani M; Lakis AA
    J Mech Behav Biomed Mater; 2024 Jul; 155():106562. PubMed ID: 38678749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of non-linear mechanical behavior of the cornea.
    Ashofteh Yazdi A; Melchor J; Torres J; Faris I; Callejas A; Gonzalez-Andrades M; Rus G
    Sci Rep; 2020 Jul; 10(1):11549. PubMed ID: 32665558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus.
    Elyasi N; Taheri KK; Narooei K; Taheri AK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1077-1093. PubMed ID: 28091803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compressible anisotropic hyperelastic model with
    Wang MN; Liu FJ
    Comput Methods Biomech Biomed Engin; 2020 Dec; 23(16):1277-1286. PubMed ID: 32692257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hyperelastic model to capture the mechanical behaviour and histological aspects of the soft tissues.
    Dwivedi KK; Lakhani P; Kumar S; Kumar N
    J Mech Behav Biomed Mater; 2022 Feb; 126():105013. PubMed ID: 34920323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidirectional hyperelastic characterization of brain white matter tissue.
    Yousefsani SA; Karimi MZV
    Biomech Model Mechanobiol; 2023 Apr; 22(2):495-513. PubMed ID: 36550243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile creep mechanical behavior of periodontal ligament: A hyper-viscoelastic constitutive model.
    Zhou J; Song Y; Shi X; Zhang C
    Comput Methods Programs Biomed; 2021 Aug; 207():106224. PubMed ID: 34146838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.