These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32764345)

  • 21. Computational modelling of the mechanical behaviour of protein-based hydrogels.
    Pérez-Benito Á; Huerta-López C; Alegre-Cebollada J; García-Aznar JM; Hervas-Raluy S
    J Mech Behav Biomed Mater; 2023 Feb; 138():105661. PubMed ID: 36630754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of the circumferential mechanical properties of the umbilical vein: experimental and numerical analyses.
    Karimi A; Navidbakhsh M; Rezaee T; Hassani K
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1418-26. PubMed ID: 24773299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Sensitivity Based Reconstruction Technique to Accomplish Breast Hyperelastic Elastography.
    Dastjerdi MM; Fallah A; Rashidi S
    Biomed Res Int; 2018; 2018():3438470. PubMed ID: 30596087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling.
    Moerman KM; Simms CK; Nagel T
    J Mech Behav Biomed Mater; 2016 Mar; 56():218-228. PubMed ID: 26719933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of hyperelastic constitutive models applicable to brain and fat tissues.
    Mihai LA; Chin L; Janmey PA; Goriely A
    J R Soc Interface; 2015 Sep; 12(110):0486. PubMed ID: 26354826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Iterative Method for Estimating Nonlinear Elastic Constants of Tumor in Soft Tissue from Approximate Displacement Measurements.
    Dastjerdi MM; Fallah A; Rashidi S
    J Healthc Eng; 2019; 2019():2374645. PubMed ID: 30723537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2009 Apr; 54(8):2557-69. PubMed ID: 19349660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study on the uniaxial mechanical properties of the umbilical vein and umbilical artery using different stress-strain definitions.
    Karimi A; Navidbakhsh M
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):645-54. PubMed ID: 25151140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical properties of the human spinal cord under the compressive loading.
    Karimi A; Shojaei A; Tehrani P
    J Chem Neuroanat; 2017 Dec; 86():15-18. PubMed ID: 28720407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measured Hyperelastic Properties of Cervical Tissue with Shear-Wave Elastography.
    Ge W; Brooker G; Mogra R; Hyett J
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments.
    Jiang Y; Li GY; Qian LX; Hu XD; Liu D; Liang S; Cao Y
    Med Image Anal; 2015 Feb; 20(1):97-111. PubMed ID: 25476413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.
    Jiang Y; Li G; Qian LX; Liang S; Destrade M; Cao Y
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1119-28. PubMed ID: 25697960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyperelastic characterization reveals proteoglycans drive the nanoscale strain-stiffening response in hyaline cartilage.
    McCreery KP; Luetkemeyer CM; Calve S; Neu CP
    J Biomech; 2023 Jan; 146():111397. PubMed ID: 36469996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review.
    Wex C; Arndt S; Stoll A; Bruns C; Kupriyanova Y
    Biomed Tech (Berl); 2015 Dec; 60(6):577-92. PubMed ID: 26087063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanics of pressurized planar hyperelastic membranes.
    Selvadurai APS
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210319. PubMed ID: 36031834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components.
    Yousefsani SA; Shamloo A; Farahmand F
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1143-1153. PubMed ID: 31853724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a hyperelastic material model of subsynovial connective tissue using finite element modeling.
    Matsuura Y; Thoreson AR; Zhao C; Amadio PC; An KN
    J Biomech; 2016 Jan; 49(1):119-122. PubMed ID: 26482734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.