These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 32764386)
1. In Vitro Determination of the Immunogenic Impact of Nanomaterials on Primary Peripheral Blood Mononuclear Cells. David CAW; Barrow M; Murray P; Rosseinsky MJ; Owen A; Liptrott NJ Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32764386 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives. Flaherty NL; Chandrasekaran A; del Pilar Sosa Peña M; Roth GA; Brenner SA; Begley TJ; Melendez JA Toxicol Lett; 2015 Dec; 239(3):205-15. PubMed ID: 26444223 [TBL] [Abstract][Full Text] [Related]
3. Anisotropic Platinum Nanoparticle-Induced Cytotoxicity, Apoptosis, Inflammatory Response, and Transcriptomic and Molecular Pathways in Human Acute Monocytic Leukemia Cells. Gurunathan S; Jeyaraj M; La H; Yoo H; Choi Y; Do JT; Park C; Kim JH; Hong K Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936679 [TBL] [Abstract][Full Text] [Related]
4. Superparamagnetic gamma-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Pereira C; Pereira AM; Quaresma P; Tavares PB; Pereira E; Araújo JP; Freire C Dalton Trans; 2010 Mar; 39(11):2842-54. PubMed ID: 20200711 [TBL] [Abstract][Full Text] [Related]
5. Oxidative Properties of Polystyrene Nanoparticles with Different Diameters in Human Peripheral Blood Mononuclear Cells (In Vitro Study). Kik K; Bukowska B; Krokosz A; Sicińska P Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922469 [TBL] [Abstract][Full Text] [Related]
6. Modifying Effect of Autotransfusion of Mesenchymal Stromal Cells on the Production of Reactive Oxygen Species and Cytokines by Mononuclear Cells in Patients with Chronic Heart Failure. Petrov VN; Agaeva EV; Popovkina OE; Konoplyannikov AG; Kaplan MA; Lepekhina LA; Sayapina EV; Semenkova IV Bull Exp Biol Med; 2017 Dec; 164(2):233-240. PubMed ID: 29181671 [TBL] [Abstract][Full Text] [Related]
7. The anti-inflammatory effects of baicalin through suppression of NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Ye C; Li S; Yao W; Xu L; Qiu Y; Liu Y; Wu Z; Hou Y Innate Immun; 2016 Apr; 22(3):196-204. PubMed ID: 26865578 [TBL] [Abstract][Full Text] [Related]
8. Cytotoxic and inflammatory responses of TiO2 nanoparticles on human peripheral blood mononuclear cells. Kongseng S; Yoovathaworn K; Wongprasert K; Chunhabundit R; Sukwong P; Pissuwan D J Appl Toxicol; 2016 Oct; 36(10):1364-73. PubMed ID: 27225715 [TBL] [Abstract][Full Text] [Related]
9. Effect of β-amyloid peptide 42 on the dynamics of expression and formation of Аβ40, IL -1β, TNF α, IL -6, IL -10 by peripheral blood mononuclear cells in vitro and its correction by curcumin. Sokolik VV; Koliada OK; Shulga SM Ukr Biochem J; 2016; 88(1):109-18. PubMed ID: 29227593 [TBL] [Abstract][Full Text] [Related]
10. Effective delivery of immunosuppressive drug molecules by silica coated iron oxide nanoparticles. Hwang J; Lee E; Kim J; Seo Y; Lee KH; Hong JW; Gilad AA; Park H; Choi J Colloids Surf B Biointerfaces; 2016 Jun; 142():290-296. PubMed ID: 26966999 [TBL] [Abstract][Full Text] [Related]
11. Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo. Li S; Fossati G; Marchetti C; Modena D; Pozzi P; Reznikov LL; Moras ML; Azam T; Abbate A; Mascagni P; Dinarello CA J Biol Chem; 2015 Jan; 290(4):2368-78. PubMed ID: 25451941 [TBL] [Abstract][Full Text] [Related]
12. The anti-inflammatory effects of acetaminophen and N-acetylcysteine through suppression of the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Liu Y; Yao W; Xu J; Qiu Y; Cao F; Li S; Yang S; Yang H; Wu Z; Hou Y Innate Immun; 2015 Aug; 21(6):587-97. PubMed ID: 25575547 [TBL] [Abstract][Full Text] [Related]
13. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Lankoff A; Arabski M; Wegierek-Ciuk A; Kruszewski M; Lisowska H; Banasik-Nowak A; Rozga-Wijas K; Wojewodzka M; Slomkowski S Nanotoxicology; 2013 May; 7(3):235-50. PubMed ID: 22264124 [TBL] [Abstract][Full Text] [Related]
14. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Lee S; Yun HS; Kim SH Biomaterials; 2011 Dec; 32(35):9434-43. PubMed ID: 21889200 [TBL] [Abstract][Full Text] [Related]
16. Impact of silver, gold, and iron oxide nanoparticles on cellular response to tumor necrosis factor. Brzóska K; Grądzka I; Kruszewski M Toxicol Appl Pharmacol; 2018 Oct; 356():140-150. PubMed ID: 30096344 [TBL] [Abstract][Full Text] [Related]
17. Meprin-alpha metalloproteases enhance lipopolysaccharide-stimulated production of tumour necrosis factor-alpha and interleukin-1beta in peripheral blood mononuclear cells via activation of NF-kappaB. Gao P; Si LY Regul Pept; 2010 Feb; 160(1-3):99-105. PubMed ID: 20026360 [TBL] [Abstract][Full Text] [Related]
18. Interference of silica nanoparticles with the traditional Limulus amebocyte lysate gel clot assay. Kucki M; Cavelius C; Kraegeloh A Innate Immun; 2014 Apr; 20(3):327-36. PubMed ID: 23884096 [TBL] [Abstract][Full Text] [Related]
19. Serum enhanced cytokine responses of macrophages to silica and iron oxide particles and nanomaterials: a comparison of serum to lung lining fluid and albumin dispersions. Brown DM; Johnston H; Gubbins E; Stone V J Appl Toxicol; 2014 Nov; 34(11):1177-87. PubMed ID: 24737200 [TBL] [Abstract][Full Text] [Related]
20. 17-oxo-DHA displays additive anti-inflammatory effects with fluticasone propionate and inhibits the NLRP3 inflammasome. Cipollina C; Di Vincenzo S; Siena L; Di Sano C; Gjomarkaj M; Pace E Sci Rep; 2016 Nov; 6():37625. PubMed ID: 27883019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]