These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 32764575)
1. Exceptionally high strain-hardening and ductility due to transformation induced plasticity effect in Ti-rich high-entropy alloys. Eleti RR; Klimova M; Tikhonovsky M; Stepanov N; Zherebtsov S Sci Rep; 2020 Aug; 10(1):13293. PubMed ID: 32764575 [TBL] [Abstract][Full Text] [Related]
2. Work hardening behavior of hot-rolled metastable Fe Kwon H; Harjo S; Kawasaki T; Gong W; Jeong SG; Kim ES; Sathiyamoorthi P; Kato H; Kim HS Sci Technol Adv Mater; 2022; 23(1):579-586. PubMed ID: 36212683 [TBL] [Abstract][Full Text] [Related]
3. FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V Jo YH; Choi WM; Kim DG; Zargaran A; Sohn SS; Kim HS; Lee BJ; Kim NJ; Lee S Sci Rep; 2019 Feb; 9(1):2948. PubMed ID: 30814569 [TBL] [Abstract][Full Text] [Related]
4. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel. Dong H; Li ZC; Somani MC; Misra RDK J Mech Behav Biomed Mater; 2021 Jul; 119():104489. PubMed ID: 33780850 [TBL] [Abstract][Full Text] [Related]
5. Ductility improvement due to martensite α' decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants. Sallica-Leva E; Caram R; Jardini AL; Fogagnolo JB J Mech Behav Biomed Mater; 2016 Feb; 54():149-58. PubMed ID: 26458113 [TBL] [Abstract][Full Text] [Related]
6. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217 [TBL] [Abstract][Full Text] [Related]
7. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Yang Y; Chen T; Tan L; Poplawsky JD; An K; Wang Y; Samolyuk GD; Littrell K; Lupini AR; Borisevich A; George EP Nature; 2021 Jul; 595(7866):245-249. PubMed ID: 34234333 [TBL] [Abstract][Full Text] [Related]
8. Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying. Wang T; Shukla S; Gwalani B; Sinha S; Thapliyal S; Frank M; Mishra RS Sci Rep; 2021 Jan; 11(1):1579. PubMed ID: 33452417 [TBL] [Abstract][Full Text] [Related]
9. An Ultra-Low Modulus of Ductile TiZrHfTa Biomedical High-Entropy Alloys through Deformation Induced Martensitic Transformation/Twinning/Amorphization. Qian B; Li X; Wang Y; Hou J; Liu J; Zou S; An F; Lu W Adv Mater; 2024 Jun; 36(24):e2310926. PubMed ID: 38446005 [TBL] [Abstract][Full Text] [Related]
10. Effects of V Addition on the Deformation Mechanism and Mechanical Properties of Non-Equiatomic CoCrNi Medium-Entropy Alloys. Shen R; Ni Z; Peng S; Yan H; Tian Y Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512441 [TBL] [Abstract][Full Text] [Related]
11. Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co-Cr-Mo alloys by introducing parent phase lattice defects. Mori M; Yamanaka K; Sato S; Tsubaki S; Satoh K; Kumagai M; Imafuku M; Shobu T; Chiba A J Mech Behav Biomed Mater; 2019 Feb; 90():523-529. PubMed ID: 30458336 [TBL] [Abstract][Full Text] [Related]
12. Design of high-ductile medium entropy alloys for dental implants. Wang S; Wu D; She H; Wu M; Shu D; Dong A; Lai H; Sun B Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110959. PubMed ID: 32487381 [TBL] [Abstract][Full Text] [Related]
13. Cold-rolling behavior of biomedical Ni-free Co-Cr-Mo alloys: Role of strain-induced ε martensite and its intersecting phenomena. Mori M; Yamanaka K; Chiba A J Mech Behav Biomed Mater; 2015 Mar; 55():201-214. PubMed ID: 26594780 [TBL] [Abstract][Full Text] [Related]
14. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys. Kuroda PAB; Buzalaf MAR; Grandini CR Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():511-515. PubMed ID: 27287149 [TBL] [Abstract][Full Text] [Related]
15. Dual enhancement in strength and ductility of Fe-rich medium-entropy alloys Wu J; Zhu X; Huang S; Zhu H Nanoscale; 2024 Aug; 16(34):16260-16273. PubMed ID: 39155867 [TBL] [Abstract][Full Text] [Related]
16. Plasticity Improvement in a Co-Rich Co Li Y; Chen Y; Nutor RK; Wang N; Cao Q; Wang X; Zhang D; Jiang JZ Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770158 [TBL] [Abstract][Full Text] [Related]
17. Deformation behavior of low-carbon Co-Cr-Mo alloys for low-friction implant applications. Salinas-Rodriguez A; Rodriguez-Galicia JL J Biomed Mater Res; 1996 Jul; 31(3):409-19. PubMed ID: 8806068 [TBL] [Abstract][Full Text] [Related]
18. Chemical inhomogeneity-induced profuse nanotwinning and phase transformation in AuCu nanowires. Yang C; Zhang B; Fu L; Wang Z; Teng J; Shao R; Wu Z; Chang X; Ding J; Wang L; Han X Nat Commun; 2023 Sep; 14(1):5705. PubMed ID: 37709777 [TBL] [Abstract][Full Text] [Related]
19. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices. Ozan S; Lin J; Li Y; Ipek R; Wen C Acta Biomater; 2015 Jul; 20():176-187. PubMed ID: 25818950 [TBL] [Abstract][Full Text] [Related]
20. Discriminating β, α and α″ phases in metastable β titanium alloys via segmentation: A combined electron backscattering diffraction and energy-dispersive X-ray spectroscopy approach. Niessen F; Gazder AA Ultramicroscopy; 2020 Apr; 211():112943. PubMed ID: 32062056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]