These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32764675)

  • 1. High-temperature differences in plasmonic broadband absorber on PET and Si substrates.
    Kim JH; Lee SG; Kim TT; Ha T; Lee SH; Kim JH; Lee YH
    Sci Rep; 2020 Aug; 10(1):13279. PubMed ID: 32764675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-area long-wave infrared broadband all-dielectric metasurface absorber based on markless laser direct writing lithography.
    Chen C; Liu Y; Jiang ZY; Shen C; Zhang Y; Zhong F; Chen L; Zhu S; Liu H
    Opt Express; 2022 Apr; 30(8):13391-13403. PubMed ID: 35472952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.
    Li W; Guler U; Kinsey N; Naik GV; Boltasseva A; Guan J; Shalaev VM; Kildishev AV
    Adv Mater; 2014 Dec; 26(47):7959-65. PubMed ID: 25327161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of a Broadband Microwave Composite Thin Film Absorber.
    Zhang Y; Gao Y; Yang S; Li Z; Wang X; Zhang J
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.
    Tagliabue G; Eghlidi H; Poulikakos D
    Sci Rep; 2014 Nov; 4():7181. PubMed ID: 25418040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators.
    Qin Z; Meng D; Yang F; Shi X; Liang Z; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Jun; 29(13):20275-20285. PubMed ID: 34266120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-Broadband Mid-Infrared Metamaterial Absorber Based on Multi-Sized Resonators.
    Huang X; Zhou Z; Cao M; Li R; Sun C; Li X
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators.
    Mehrabi S; Rezaei MH; Zarifkar A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Apr; 37(4):697-704. PubMed ID: 32400557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion.
    Lin KT; Lin H; Yang T; Jia B
    Nat Commun; 2020 Mar; 11(1):1389. PubMed ID: 32170054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime.
    Li C; Fan H; Dai Q; Wei Z; Lan S; Liu H
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband infrared circular dichroism in chiral metasurface absorbers.
    Ouyang L; Rosenmann D; Czaplewski DA; Gao J; Yang X
    Nanotechnology; 2020 May; 31(29):295203. PubMed ID: 32289769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All silicon MIR super absorber using fractal metasurfaces.
    Ali AM; Ghanim AM; Othman M; Swillam MA
    Sci Rep; 2023 Sep; 13(1):15545. PubMed ID: 37730905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Terahertz Transparent Graphene-Based Absorber.
    D'Aloia AG; D'Amore M; Sarto MS
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32353933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.