These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 32764796)

  • 21. A state-of-the-art review of foot pressure.
    Zulkifli SS; Loh WP
    Foot Ankle Surg; 2020 Jan; 26(1):25-32. PubMed ID: 30600155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insole-Based Systems for Health Monitoring: Current Solutions and Research Challenges.
    Subramaniam S; Majumder S; Faisal AI; Deen MJ
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Prototype E-Textile Sock.
    D'Addio G; Evangelista S; Donisi L; Biancardi A; Andreozzi E; Pagano G; Arpaia P; Cesarelli M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():17498-1752. PubMed ID: 31947502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An umbilical data-acquisition system for measuring pressures between the foot and shoe.
    Zhu HS; Maalej N; Webster JG; Tompkins WJ; Bach-y-Rita P; Wertsch JJ
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):908-11. PubMed ID: 2227977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Smart Shoe-Assisted Evaluation of Using a Single Trunk/Pocket-Worn Accelerometer to Detect Gait Phases.
    Avvenuti M; Carbonaro N; Cimino MGCA; Cola G; Tognetti A; Vaglini G
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Vibrotactile and Plantar Force Measurement-Based Biofeedback System: Paving the Way towards Wearable Balance-Improving Devices.
    Ma CZ; Wan AH; Wong DW; Zheng YP; Lee WC
    Sensors (Basel); 2015 Dec; 15(12):31709-22. PubMed ID: 26694399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of plantar pressure measurements for a novel in-shoe plantar sensory replacement unit.
    Ferber R; Webber T; Everett B; Groenland M
    J Diabetes Sci Technol; 2013 Sep; 7(5):1167-75. PubMed ID: 24124942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke.
    Ma CZ; Zheng YP; Lee WC
    Top Stroke Rehabil; 2018 Jan; 25(1):20-27. PubMed ID: 28950803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D-Printed Capacitive Smart Insole for Plantar Pressure Monitoring.
    Samarentsis AG; Makris G; Spinthaki S; Christodoulakis G; Tsiknakis M; Pantazis AK
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A knowledge-based modeling for plantar pressure image reconstruction.
    Ostadabbas S; Nourani M; Saeed A; Yousefi R; Pompeo M
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2538-49. PubMed ID: 24833414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in dynamic plantar pressure during loaded gait.
    Goffar SL; Reber RJ; Christiansen BC; Miller RB; Naylor JA; Rodriguez BM; Walker MJ; Teyhen DS
    Phys Ther; 2013 Sep; 93(9):1175-84. PubMed ID: 23580629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of Foot Plantar Center of Pressure Trajectories with Low-Cost Instrumented Insoles Using an Individual-Specific Nonlinear Model.
    Hu X; Zhao J; Peng D; Sun Z; Qu X
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a Self-Powered Piezo-Resistive Smart Insole Equipped with Low-Power BLE Connectivity for Remote Gait Monitoring.
    de Fazio R; Perrone E; Velázquez R; De Vittorio M; Visconti P
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in-shoe device to measure plantar pressure during daily human activity.
    Saito M; Nakajima K; Takano C; Ohta Y; Sugimoto C; Ezoe R; Sasaki K; Hosaka H; Ifukube T; Ino S; Yamashita K
    Med Eng Phys; 2011 Jun; 33(5):638-45. PubMed ID: 21310644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validity and reliability of a shoe-embedded sensor module for measuring foot progression angle during over-ground walking.
    Charlton JM; Xia H; Shull PB; Hunt MA
    J Biomech; 2019 May; 89():123-127. PubMed ID: 31047695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stiffness Effects in Rocker-Soled Shoes: Biomechanical Implications.
    Lin SY; Su PF; Chung CH; Hsia CC; Chang CH
    PLoS One; 2017; 12(1):e0169151. PubMed ID: 28046009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Testing and comparing of film-type sensor materials in measurement of plantar pressure distribution.
    Rajala S; Salpavaara T; Tuukkanen S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():251-254. PubMed ID: 28268324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel Low-Cost Wireless Footwear System for Monitoring Diabetic Foot Patients.
    Wang D; Ouyang J; Zhou P; Yan J; Shu L; Xu X
    IEEE Trans Biomed Circuits Syst; 2021 Feb; 15(1):43-54. PubMed ID: 33296308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and development of a cost effective plantar pressure distribution analysis system for the dynamically moving feet.
    Karkokli R; McConville KM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6008-11. PubMed ID: 17946354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.