These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32765334)

  • 21. Accurate performance of a rat model of schizophrenia in the water maze depends on visual cue availability and stability: a distortion in cognitive mapping abilities?
    Preissmann D; Bertholet L; Sierro G; Cabungcal JH; Schenk F
    Behav Brain Res; 2011 Sep; 223(1):145-53. PubMed ID: 21549761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overshadowing of geometric cues by a beacon in a spatial navigation task.
    Redhead ES; Hamilton DA; Parker MO; Chan W; Allison C
    Learn Behav; 2013 Jun; 41(2):179-91. PubMed ID: 23180188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hippocampus and cortex are involved in the retrieval of a spatial memory under full and partial cue availability.
    Zorzo C; Arias JL; Méndez M
    Behav Brain Res; 2021 May; 405():113204. PubMed ID: 33647378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Testing the spatial- versus object-learning distinction: water-maze performance of male rats exposed to ethanol during the brain growth spurt.
    Girard TA; Wainwright PE
    Behav Brain Res; 2002 Aug; 134(1-2):493-503. PubMed ID: 12191836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cues used by male and female hooded rats for locating a brightness change.
    Hughes RN; Maginnity ME
    Behav Processes; 2007 Jan; 74(1):79-87. PubMed ID: 17097836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of pool shape manipulations on rat spatial memory acquired in the Morris water maze.
    Bye CM; Hong NS; Moore K; Deibel SH; McDonald RJ
    Learn Behav; 2019 Mar; 47(1):29-37. PubMed ID: 29520732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis.
    Devan BD; McDonald RJ; White NM
    Behav Brain Res; 1999 Apr; 100(1-2):5-14. PubMed ID: 10212049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial and nonspatial Morris maze learning: impaired behavioral flexibility in mice with ectopias located in the prefrontal cortex.
    Hyde LA; Stavnezer AJ; Bimonte HA; Sherman GF; Denenberg VH
    Behav Brain Res; 2002 Jul; 133(2):247-59. PubMed ID: 12110458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Definition of a new maze paradigm for the study of spatial behavior in rats.
    Cressant A; Granon S
    Brain Res Brain Res Protoc; 2003 Oct; 12(2):116-24. PubMed ID: 14613814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual Priming Enhances the Effects of Nonspatial Cognitive Rehabilitation Training on Spatial Learning After Experimental Traumatic Brain Injury.
    Edwards CM; Kumar K; Koesarie K; Brough E; Ritter AC; Brayer SW; Thiels E; Skidmore ER; Wagner AK
    Neurorehabil Neural Repair; 2015 Oct; 29(9):897-906. PubMed ID: 25665829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual discrimination learning in the water maze: a novel test for visual acuity.
    Robinson L; Bridge H; Riedel G
    Behav Brain Res; 2001 Feb; 119(1):77-84. PubMed ID: 11164528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microhabitat use affects goby (Gobiidae) cue choice in spatial learning task.
    White GE; Brown C
    J Fish Biol; 2015 Apr; 86(4):1305-18. PubMed ID: 25753735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrahippocampal cholinergic grafts in aged rats compensate impairments in a radial maze and in a place learning task.
    Schenk F; Contant B; Werffeli P
    Exp Brain Res; 1990; 82(3):641-50. PubMed ID: 2292276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beacon training in a water maze can facilitate and compete with subsequent room cue learning in rats.
    Timberlake W; Sinning SA; Leffel JK
    J Exp Psychol Anim Behav Process; 2007 Jul; 33(3):225-43. PubMed ID: 17620023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning associations between places and visual cues without learning to navigate: neither fornix nor entorhinal cortex is required.
    Gaffan EA; Bannerman DM; Healey AN
    Hippocampus; 2003; 13(4):445-60. PubMed ID: 12836914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A room with a view and a polarizing cue: individual differences in the stimulus control of place navigation and passive latent learning in the water maze.
    Devan BD; Petri HL; Mishkin M; Stouffer EM; Bowker JL; Yin PB; Buffalari DM; Olds JL
    Neurobiol Learn Mem; 2002 Jul; 78(1):79-99. PubMed ID: 12071669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Egocentrically-stable discriminative stimulus-based spatial navigation in mice: implementation and comparison with allocentric cues.
    Chun J; Kim Y; Choi JW; Kim D; Jo S
    Sci Rep; 2019 Apr; 9(1):6451. PubMed ID: 31015510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perceptual learning in maze discriminations.
    Trobalon JB; Sansa J; Chamizo VD; Mackintosh NJ
    Q J Exp Psychol B; 1991 Nov; 43(4):389-402. PubMed ID: 1771243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Negative patterning in the spatial domain.
    Ambilollu C; Huang T; Horne MR
    Behav Processes; 2022 Nov; 203():104768. PubMed ID: 36272674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.
    Rogers J; Churilov L; Hannan AJ; Renoir T
    Neurobiol Learn Mem; 2017 Mar; 139():37-49. PubMed ID: 27988312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.