These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32765469)

  • 1. High Light Induced Alka(e)ne Biodegradation for Lipid and Redox Homeostasis in Cyanobacteria.
    Qiao Y; Wang W; Lu X
    Front Microbiol; 2020; 11():1659. PubMed ID: 32765469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering cyanobacteria to improve photosynthetic production of alka(e)nes.
    Wang W; Liu X; Lu X
    Biotechnol Biofuels; 2013 May; 6(1):69. PubMed ID: 23641684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering acyl-ACP reductase with fusion tags enhances alka(e)ne synthesis in Escherichia coli.
    Han J; Asano K; Matsumoto T; Yamada R; Ogino H
    Enzyme Microb Technol; 2023 Aug; 168():110262. PubMed ID: 37224590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of alka(e)nes triggers profound remodeling of glycerolipid and carotenoid composition in cyanobacteria membrane.
    Miao R; Légeret B; Cuine S; Burlacot A; Lindblad P; Li-Beisson Y; Beisson F; Peltier G
    Plant Physiol; 2024 Sep; 196(1):397-408. PubMed ID: 38850059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial Synthesis of Alka(e)nes.
    Wang W; Lu X
    Front Bioeng Biotechnol; 2013; 1():10. PubMed ID: 25023719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the improvement of cyanobacterial enzymes for bioalkane production.
    Hayashi Y; Arai M
    Microb Cell Fact; 2022 Dec; 21(1):256. PubMed ID: 36503511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase.
    Warui DM; Pandelia ME; Rajakovich LJ; Krebs C; Bollinger JM; Booker SJ
    Biochemistry; 2015 Feb; 54(4):1006-15. PubMed ID: 25496470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alka(e)ne synthesis in Cupriavidus necator boosted by the expression of endogenous and heterologous ferredoxin-ferredoxin reductase systems.
    Crépin L; Barthe M; Leray F; Guillouet SE
    Biotechnol Bioeng; 2018 Oct; 115(10):2576-2584. PubMed ID: 30063082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobacterial Enzymes for Bioalkane Production.
    Arai M; Hayashi Y; Kudo H
    Adv Exp Med Biol; 2018; 1080():119-154. PubMed ID: 30091094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved production of fatty alcohols in cyanobacteria by metabolic engineering.
    Yao L; Qi F; Tan X; Lu X
    Biotechnol Biofuels; 2014; 7():94. PubMed ID: 25024742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic interactions at the interface of two enzymes are essential for two-step alkane biosynthesis in cyanobacteria.
    Chang M; Shimba K; Hayashi Y; Arai M
    Biosci Biotechnol Biochem; 2020 Feb; 84(2):228-237. PubMed ID: 31601165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of fatty aldehydes into alk (a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system.
    Zhang J; Lu X; Li JJ
    Biotechnol Biofuels; 2013 Jun; 6(1):86. PubMed ID: 23759169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving hydrocarbon production by engineering cyanobacterial acyl-(acyl carrier protein) reductase.
    Kudo H; Hayashi Y; Arai M
    Biotechnol Biofuels; 2019; 12():291. PubMed ID: 31890019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of high-titer alka(e)nes in Yarrowia lipolytica is enabled by a discovered mechanism.
    Li J; Ma Y; Liu N; Eser BE; Guo Z; Jensen PR; Stephanopoulos G
    Nat Commun; 2020 Dec; 11(1):6198. PubMed ID: 33273473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production.
    Crépin L; Lombard E; Guillouet SE
    Metab Eng; 2016 Sep; 37():92-101. PubMed ID: 27212691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into catalytic mechanism and product delivery of cyanobacterial acyl-acyl carrier protein reductase.
    Gao Y; Zhang H; Fan M; Jia C; Shi L; Pan X; Cao P; Zhao X; Chang W; Li M
    Nat Commun; 2020 Mar; 11(1):1525. PubMed ID: 32251275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of aldehyde-producing activities of cyanobacterial acyl-(acyl carrier protein) reductases.
    Kudo H; Nawa R; Hayashi Y; Arai M
    Biotechnol Biofuels; 2016; 9():234. PubMed ID: 27822307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length.
    Bao L; Li JJ; Jia C; Li M; Lu X
    Biotechnol Biofuels; 2016; 9(1):185. PubMed ID: 27588038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase.
    Li N; Nørgaard H; Warui DM; Booker SJ; Krebs C; Bollinger JM
    J Am Chem Soc; 2011 Apr; 133(16):6158-61. PubMed ID: 21462983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation, fate, and turnover of free fatty acids in cyanobacteria.
    Kahn A; Oliveira P; Cuau M; Leão PN
    FEMS Microbiol Rev; 2023 Mar; 47(2):. PubMed ID: 37061785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.