BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 32765541)

  • 1. Global Role of Crop Genomics in the Face of Climate Change.
    Pourkheirandish M; Golicz AA; Bhalla PL; Singh MB
    Front Plant Sci; 2020; 11():922. PubMed ID: 32765541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Cereal Crop Genomics for Resilience under Climate Change.
    Zenda T; Liu S; Dong A; Duan H
    Life (Basel); 2021 May; 11(6):. PubMed ID: 34072447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-Generation Breeding Strategies for Climate-Ready Crops.
    Razzaq A; Kaur P; Akhter N; Wani SH; Saleem F
    Front Plant Sci; 2021; 12():620420. PubMed ID: 34367194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops.
    Rogo U; Simoni S; Fambrini M; Giordani T; Pugliesi C; Mascagni F
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Crop Breeding Through Precision Genome Editing.
    Nerkar G; Devarumath S; Purankar M; Kumar A; Valarmathi R; Devarumath R; Appunu C
    Front Genet; 2022; 13():880195. PubMed ID: 35910205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value.
    Zenda T; Liu S; Dong A; Li J; Wang Y; Liu X; Wang N; Duan H
    Front Plant Sci; 2021; 12():774994. PubMed ID: 34925418
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Razzaq A; Saleem F; Wani SH; Abdelmohsen SAM; Alyousef HA; Abdelbacki AMM; Alkallas FH; Tamam N; Elansary HO
    Front Plant Sci; 2021; 12():681367. PubMed ID: 34603347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart breeding approaches in post-genomics era for developing climate-resilient food crops.
    Naqvi RZ; Siddiqui HA; Mahmood MA; Najeebullah S; Ehsan A; Azhar M; Farooq M; Amin I; Asad S; Mukhtar Z; Mansoor S; Asif M
    Front Plant Sci; 2022; 13():972164. PubMed ID: 36186056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation.
    Rajpal VR; Singh A; Kathpalia R; Thakur RK; Khan MK; Pandey A; Hamurcu M; Raina SN
    Front Plant Sci; 2023; 14():1127239. PubMed ID: 36998696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reap the crop wild relatives for breeding future crops.
    Bohra A; Kilian B; Sivasankar S; Caccamo M; Mba C; McCouch SR; Varshney RK
    Trends Biotechnol; 2022 Apr; 40(4):412-431. PubMed ID: 34629170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing designer crops for climate resilience through an integrated genomics approach.
    Mohd Saad NS; Neik TX; Thomas WJW; Amas JC; Cantila AY; Craig RJ; Edwards D; Batley J
    Curr Opin Plant Biol; 2022 Jun; 67():102220. PubMed ID: 35489163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing Crop Wild Diversity for Climate Change Adaptation.
    Cortés AJ; López-Hernández F
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34065368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-omics revolution to promote plant breeding efficiency.
    Mahmood U; Li X; Fan Y; Chang W; Niu Y; Li J; Qu C; Lu K
    Front Plant Sci; 2022; 13():1062952. PubMed ID: 36570904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects of Feral Crop De Novo Redomestication.
    Pisias MT; Bakala HS; McAlvay AC; Mabry ME; Birchler JA; Yang B; Pires JC
    Plant Cell Physiol; 2022 Nov; 63(11):1641-1653. PubMed ID: 35639623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in plant translational genomics for crop improvement.
    Mathur S; Singh D; Ranjan R
    Adv Protein Chem Struct Biol; 2024; 139():335-382. PubMed ID: 38448140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomics of crop wild relatives: expanding the gene pool for crop improvement.
    Brozynska M; Furtado A; Henry RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1070-85. PubMed ID: 26311018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.